Refine your search:     
Report No.
 - 

Effect of electron correlations on spin excitation bandwidth in Ba$$_{0.75}$$K$$_{0.25}$$Fe$$_{2}$$As$$_{2}$$ as seen via time-of-flight inelastic neutron scattering

Murai, Naoki; Suzuki, Katsuhiro*; Ideta, Shinichiro*; Nakajima, Masamichi*; Tanaka, Kiyohisa*; Ikeda, Hiroaki*; Kajimoto, Ryoichi 

We use inelastic neutron scattering (INS) to investigate the effect of electron correlations on spin dynamics in iron-based superconductor Ba$$_{0.75}$$K$$_{0.25}$$Fe$$_{2}$$As$$_{2}$$. Our INS data show a spin-wave-like dispersive feature, with a zone boundary energy of 200 meV. A first principles analysis of dynamical spin susceptibility, incorporating the mass renormalization factor of 3, as determined by angle-resolved photoemission spectroscopy, provides a reasonable description of the observed spin excitations. This analysis shows that electron correlations in the Fe-3d bands yield enhanced effective electron masses, and consequently, induce substantial narrowing of the spin excitation bandwidth. Our results highlight the importance of electron correlations in an itinerant description of the spin excitations in iron-based superconductors.

Accesses

:

- Accesses

InCites™

:

Percentile:25.37

Category:Materials Science, Multidisciplinary

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.