Refine your search:     
Report No.

Influence of Zn injection on PWSCC crack growth rates and oxide film properties of Alloy 600

Chimi, Yasuhiro; Sato, Kenji*; Kasahara, Shigeki; Umehara, Ryuji*; Hanawa, Satoshi 

To investigate the influence of Zinc (Zn) injection on primary water stress corrosion cracking (PWSCC) growth behavior, crack growth tests of 10% cold-worked Alloy 600 were performed in simulated primary water environment of pressurized water reactor (PWR) at 320$$^{circ}$$C with a low-concentration (5-10 ppb) Zn injection under dissolved hydrogen (DH) conditions of 5, 30, and 50 cc/kgH$$_{2}$$O. As a result of the crack growth tests, DH-dependence of crack growth rate (CGR) showed a similar tendency to the predicted CGR based on the CGR data without Zn injection, indicating almost no effect of a low-concentration Zn injection on the crack growth behavior. Moreover, the microstructural analyses of oxide films formed inside the crack and on the specimen surface were conducted, and the intake of Zn in the oxides was detected on the specimen surface, but not detected inside the crack. This result was considered to be the cause of no Zn injection effect on the crack growth behavior.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.