Refine your search:     
Report No.
 - 

Molecular dynamics simulations of physical properties of water and cations in montmorillonite interlayer; Application to diffusion model

Yotsuji, Kenji*; Tachi, Yukio  ; Kawamura, Katsuyuki*; Arima, Tatsumi*; Sakuma, Hiroshi*

Molecular dynamics (MD) simulations were conducted to investigate physical properties of water and cations in montmorillonite interlayer nanopores. The swelling behaviors and hydration states were firstly evaluated as functions of interlayer cations and layer charge. The diffusion coefficients of water and cations in interlayer nanopores were decreased in comparison with those in bulk water and came closer to those in bulk water when basal spacing increased. The viscosity coefficients of interlayer water estimated indicated a significant effect of viscoelectricity at 1- and 2-layer hydration states and higher layer charge of montmorillonite. These trends from MD calculations were confirmed to be consistent with existing measured data and previous MD simulation. In addition, model and parameter related to viscoelectric effect used in the diffusion model was refined based on comparative discussion between MD simulations and measurements. The series of MD calculations could provide atomic level understanding for the developments and improvements of the diffusion model for compacted montmorillonite.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.