Refine your search:     
Report No.
 - 

On the hydrogen production of geopolymer wasteforms under irradiation

Cantarel, V.  ; Arisaka, Makoto ; Yamagishi, Isao 

The hydrogen gas (H$$_{2}$$) production of wasteforms is a major safety concern for encapsulating nuclear wastes. For geopolymers, the H$$_{2}$$ produced by radiolytic processes is a key factor because of the large amount of water present in their porous structure. Herein, the hydrogen production was measured under $$^{60}$$Co gamma irradiation. The effect of water saturation and sample size were studied for pure geopolymers, or using zeolites as an example waste. When geopolymer monolithic samples were large and saturated by water, the hydrogen released was measured up to two orders of magnitude lower with a 40 cm long cylinder samples (1.9$$times$$10$$^{-10}$$ mol/J) than a sample in powder form (2.2$$times$$10$$^{-8}$$ mol/J). To interpret results, a simple model was used, considering only hydrogen production, a potential recombination and its diffusion in the geopolymer matrix. Knowing the diffusion constant of the matrix, the model was able to reproduce the evolution of the hydrogen release as a function of the water saturation level and predict the evolution when sample size is increased up to 40 cm.

Accesses

:

- Accesses

InCites™

:

Percentile:48.77

Category:Materials Science, Ceramics

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.