検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年

Behavior of high-burnup advanced LWR fuel cladding tubes under LOCA conditions

高燃焼度改良型軽水炉燃料被覆管のLOCA時挙動

成川 隆文 ; 天谷 政樹

Narukawa, Takafumi; Amaya, Masaki

To evaluate behavior of high-burnup advanced light-water-reactor fuel cladding tubes under loss-of-coolant accident conditions, laboratory-scale isothermal oxidation tests and integral thermal shock tests were performed using the following advanced fuel cladding tubes with burnups of 73-85 GWd/t: M-MDA$textsuperscript{texttrademark}$, low-tin ZIRLO$textsuperscript{texttrademark}$, M5textregistered, and Zircaloy-2 (LK3). The isothermal oxidation tests were performed in steam-flowing conditions at temperatures ranging from 1173 to 1473 K for durations between 120 and 4000 s. The oxidation kinetics of the high-burnup advanced fuel cladding tube specimens was comparable to or slower than that of the unirradiated Zircaloy-4 cladding tube and was slower than that given by the Baker-Just oxidation rate equation. Therefore, the oxidation kinetics is considered to be not significantly accelerated by extending the burnup and changing the alloy composition. During the integral thermal shock tests, the high-burnup advanced fuel cladding tube specimens did not fracture under the oxidation condition equivalent to or lower than the fracture limit of the unirradiated Zircaloy-4 cladding tube. Therefore, the fracture limit of fuel cladding tubes is considered to be not significantly reduced by extending the burnup and changing the alloy composition, though it may slightly decrease with increasing initial hydrogen concentration.

Access

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.