Refine your search:     
Report No.

Provenance of uranium particulate contained within Fukushima Daiichi Nuclear Power Plant Unit 1 ejecta material

Martin, P. G.*; Louvel, M.*; Cipiccia, S.*; Jones, C. P.*; Batey, D. J.*; Hallam, K. R.*; Yang, I. A. X.*; Satou, Yukihiko  ; Rau, C.*; Mosselmans, J. F. W.*; Richards, D. A.*; Scott, T. B.*

Synchrotron radiation (SR) analysis techniques alongside secondary ion mass spectrometry (SIMS) measurements have been made on sub-mm particulate material derived from reactor Unit 1 of the Fukushima Daiichi Nuclear Power Plant (FDNPP). Using these methods, it has been possible to investigate the distribution, state and isotopic composition of micron-scale U particulate contained within the larger Si-based ejecta material. Through combined SR micro-focused X-ray fluorescence (SR-micro-XRF) and absorption contrast SR micro-focused X-ray tomography (SR-micro-XRT), the U particulate was found to be located around the exterior circumference of the highly-porous particle. Synchrotron radiation micro-focused X-ray absorption near edge structure (SR-micro-XANES) analysis of a number of these entrapped particles revealed them to exist within the U(IV) oxidation state, as UO$$_{2}$$, and identical in structure to reactor fuel. Confirmation that this U was of nuclear origin ($$^{235}$$U-enriched) was provided through secondary ion mass spectrometry (SIMS) analysis with an isotopic enrichment ratio characteristic of a provenance from reactor Unit 1 at the FDNPP. These results provide clear evidence of the event scenario (that a degree of core fragmentation and release occurred from reactor Unit 1), with such spent fuel ejecta existing; (i) within the stable U(IV) oxidation state; and (ii) contained within a bulk Si-based particle. While this U is unlikely to represent an environmental or health hazard, such assertions would likely change, however, should break-up of the Si-containing bulk particle occur. However, more important to the long-term decommissioning of the reactors (and clean-up) on the FDNPP, is the knowledge that core integrity of reactor Unit 1 was compromised with nuclear material existing outside of the reactors primary containment.



- Accesses




Category:Multidisciplinary Sciences



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.