Refine your search�ソスF     
Report No.
 - 

Adsorption mechanism of ReO$$_{4}$$$$^{-}$$ on Ni-Zn layered hydroxide salt and its application to removal of ReO$$_{4}$$$$^{-}$$ as a surrogate of TcO$$_{4}$$$$^{-}$$

Tanaka, Kazuya  ; Kozai, Naofumi   ; Yamasaki, Shinya*; Onuki, Toshihiko; Kaplan, D. I.*; Grambow, B.

In this study, Ni-Zn layered hydroxide salt (LHS) was used for adsorption experiments of ReO$$_{4}$$$$^{-}$$, as a surrogate of TcO$$_{4}$$$$^{-}$$, in aqueous solutions with various initial Re and sodium salt concentrations. The maximum adsorption amount of Re was estimated at 127.7 mg/g (6.86 $$times$$ 10$$^{-4}$$ eq/g) by fitting adsorption isotherm of ReO$$_{4}$$$$^{-}$$ to Langmuir plot. The adsorption of ReO$$_{4}$$$$^{-}$$ at neutral pH was a reversible process by anion exchange, and decreased with increasing Cl$$^{-}$$, NO$$_{3}$$$$^{-}$$ and SO$$_{4}$$$$^{2-}$$ in solution. EXAFS analysis indicated that ReO$$_{4}$$$$^{-}$$ was adsorbed as an outer-sphere complex on Ni-Zn LHS. The Ni-Zn LHS is a more robust adsorbent for ReO$$_{4}$$$$^{-}$$ than the Mg-Al LDH in terms of solution pH and tolerance to competing anions, and may be an effective alternative to the traditional and more limited method of removing aqueous TcO$$_{4}$$$$^{-}$$ by reductive precipitation.

Accesses

:

- Accesses

InCites™

:

Percentile:68.46

Category:Chemistry, Physical

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.