Refine your search�ソスF     
Report No.

Using natural systems data to test models of transformation of montmorillonite

Savage, D.*; Wilson, J.*; Benbow, S.*; Sasamoto, Hiroshi   ; Oda, Chie  ; Walker, C.*; Kawama, Daisuke*; Tachi, Yukio  

Safety functions for the clay buffer in a repository for HLW are fulfilled if the presence of montmorillonite is maintained in the long-term. Its transformation to non-swelling minerals (e.g. illite) is addressed in most safety assessments by using semi-empirical kinetic models. However, this approach contrasts with all other near-field geochemical modelling activities that employ complex reaction-transport simulations. Here we investigate the consistency of these two approaches by modelling the montmorillonite to illite transformation in the marine sediment profile penetrated by the Ocean Drilling Program (ODP) Site 1174. Illitisation of smectite at Site 1174 using the semi-empirical approach has been modeled by previous studies, and shown to provide a reasonable match to the gradual change of illite content with depth. In comparison, the initial results of reaction-transport simulations showed rapid (conservative) conversion of montmorillonite to illite. The cause of this rapid conversion appears to be the transformation of amorphous silica to quartz over a similar timescale. Subsequent simulations have focused on alternative mechanisms for mineral growth that may explain the discrepancies between the semi-empirical and reaction-transport approaches.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.