検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年

畳み込みニューラルネットワークと境界交換を用いた複数領域にまたがる定常流のシミュレーション結果の予測

Steady flow prediction using convolutional neural networks with boundary exchange

畑山 そら*; 下川辺 隆史*; 小野寺 直幸   

Hatayama, Sora*; Shimokawabe, Takashi*; Onodera, Naoyuki

数値流体力学(CFD)は、流体現象を解析する手法として広く用いられている。しかしながら、これらを工学問題に適用した場合、計算コストが大きい事と、流体現象が定常状態に到達するまでに長時間の計算が必要という問題があげられる。この問題の解決策として、我々の研究グループでは、深層学習法の1つである畳み込みニューラルネットワーク(CNN)の使用を試みた。本研究では、CNNによる定常流体解析の高速な予測と、複数の計算領域間の袖領域の情報交換を組み合わせることで、高速な大領域の解析を実現した。

Computational fluid dynamics (CFD) is widely used as a fluid analysis technique. However, these have a problem that the calculation cost is very expensive and the execution time for reaching a steady-state is long. To solve this problem, we use convolutional neural networks (CNN), which is one of the deep learning methods, to predict CFD results. In this research, we provide the method and implementation of steady flow prediction using CNN with boundary exchange to predict the CFD results in a large area.

Access

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.