Refine your search:     
Report No.
 - 

GPU-acceleration of locally mesh allocated two phase flow solver for nuclear reactors

Onodera, Naoyuki  ; Idomura, Yasuhiro  ; Ali, Y.*; Yamashita, Susumu ; Shimokawabe, Takashi*; Aoki, Takayuki*

This paper presents a GPU-based Poisson solver on a block-based adaptive mesh refinement (block-AMR) framework. The block-AMR method is essential for GPU computation and efficient description of the nuclear reactor. In this paper, we successfully implement a conjugate gradient method with a state-of-the-art multi-grid preconditioner (MG-CG) on the block-AMR framework. GPU kernel performance was measured on the GPU-based supercomputer TSUBAME3.0. The bandwidth of a vector-vector sum, a matrix-vector product, and a dot product in the CG kernel gave good performance at about 60% of the peak performance. In the MG kernel, the smoothers in a three-stage V-cycle MG method are implemented using a mixed precision RB-SOR method, which also gave good performance. For a large-scale Poisson problem with $$453.0 times 10^6$$ cells, the developed MG-CG method reduced the number of iterations to less than 30% and achieved $$times$$ 2.5 speedup compared with the original preconditioned CG method.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.