検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年

Simulation of slip plane transition from {110} to {112} of body-centered-cubic metals

体心立方構造金属における{110}から{112}へのすべり面転移のシミュレーション

鈴土 知明   ; 福元 謙一*

Suzudo, Tomoaki; Fukumoto, Kenichi*

体心立方(BCC)金属は、構造材料として原子炉の多くのコンポーネントに適用され、その熱的機械的健全性の研究は非常に重要である。低温においてBCC金属の変形の多くはらせん転位の移動によるものである。BCC金属のらせん転位の運動は複雑であることが知られている。本研究では、最新の分子動力学モデリング手法を用いて、実験で観測されている温度上昇によるすべり面の遷移を初めて再現することに成功した。次に、パイエルス障壁を超える転位のジャンプを高解像度で解析するアルゴリズムを考案し、この遷移現象の原因は熱揺らぎである可能性が高いことを示した。

Body-centered cubic (BCC) metals are applied as structural materials to many components of nuclear reactors, and their thermal and mechanical integrity are of great importance. Much of the deformation of BCC metals at low temperatures is due to the movement of screw dislocations. The motion of screw dislocations in BCC metals is known to be complex. In this research, we succeeded in reproducing the transition of the slip plane as the temperature rise observed in the experiment for the first time using the latest molecular dynamics modeling method. Next, we devised an algorithm to analyze dislocation jumps over the Peierls barrier with high resolution, and showed that the cause of this slip-plane transition phenomenon is likely thermal fluctuation of lattice.

Access

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.