Refine your search:     
Report No.

Realistic modeling approach for tracer migration and retention in fractured crystalline rocks from the Grimsel Test Site

Tachi, Yukio  ; Ito, Tsuyoshi*; Fukatsu, Yuta ; Akagi, Yosuke*; Sato, Hisao*; Hu, Q.*; Martin, A. J.*

In order to develop a realistic model and reliable parameters for long-term safety assessments of geological disposal, it is necessary to understand and quantify the effects of heterogeneities found around the fractures on RN transport processes in fractured crystalline rocks. This paper presents a comprehensive approach developed for coupling laboratory tests, microscopic observations and modeling in order to understand and quantify tracer transport processes occurring in natural fracture, using different types of fractured granodiorite sample from the Grimsel Test Site (GTS), Switzerland. Laboratory tests including through-diffusion, batch sorption and flow-through tests using five tracers with different retention properties indicated that tracer retention was consistently in the sequence of HDO $$<$$ Se $$<$$ Cs $$<$$ Ni $$<$$ Eu. Microscale heterogeneities around the fracture were clarified and quantified by coupling X-ray computed tomography and electron probe microanalysis. Realistic model incorporating heterogeneities around the fracture and their properties provided a much better interpretation for breakthrough curves of all tracers.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.