Refine your search:     
Report No.
 - 

Experimental evaluation of Sr and Ba distribution in ex-vessel debris under a temperature gradient

Sudo, Ayako ; Sato, Takumi ; Ogi, Hiroshi ; Takano, Masahide 

Dissolution behavior of Sr and Ba is crucial for evaluating secondary source terms via coolant water from ex-vessel debris accumulated at Fukushima Daiichi Nuclear Power Plant. To understand the mechanism, knowing the distribution of Sr and Ba in the ex-vessel debris is necessary. As a result of reaction tests between simulated corium and concrete materials, two layered structures were observed in the solidified sample, (A) a silicate glass-based ((Si-Al-Ca-Fe-Zr-Cr-U-Sr-Ba)-O) phase-rich layer in the upper surface region and (B) a (U,Zr)O$$_{2}$$ particle-rich layer at the inner region. Measurable concentrations of Sr and Ba were observed in layer (A) (approximately 1.7 times that in the layer (B)). According to thermodynamic analysis, (U,Zr)O$$_{2}$$ is predicted to solidify, in advance, in the concrete-based melt around 2177 $$^{circ}$$C. Then, the residual melt is solidified as a silicate glass, and Sr and Ba are preferentially dissolved into the silicate glass. During the tests, (U,Zr)O$$_{2}$$ particles sank, in advance, in the melt because of its higher density, and the silicate glass phase relocated to the surface layer. On the other hand, silicate glass containing Sr and Ba is predicted to be hardly soluble in water and chemically stable.

Accesses

:

- Accesses

InCites™

:

Percentile:0.01

Category:Nuclear Science & Technology

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.