検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年

Steady flow prediction across multiple regions using deep learning and boundary exchange

深層学習とその境界交換を用いた複数領域にまたがる定常流れ予測

畑山 そら*; 下川辺 隆史*; 小野寺 直幸   

Hatayama, Sora*; Shimokawabe, Takashi*; Onodera, Naoyuki

本研究は、入力形状を複数の部分に分割し、各部分に小型ニューラルネットワークを並列に適用することで、大規模シミュレーションの結果が予測可能な手法を提案した。構築したモデルは、符号付き距離関数を入力として用いることで2次元の速度場を予測が可能となる。この方法に加えて、大きな領域を複数の領域に分割し、分割された領域に対して予測を反復的に実施する。最終的には、境界交換法を用いることで複数の領域にまたがる速度場が再現されることを確認した。

We propose a prediction method for large-scale simulation results by dividing the input geometry into multiple parts and applying a single small neural network to each part in parallel. The constructed model predicts a two-dimensional velocity field using a signed distance function as input. In addition, we divide a large area into multiple regions and the prediction is iteratively performed for each region until convergence. Finally, we confirmed that the velocity fields of multiple regions are reproduced by using a boundary exchange method.

Access

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.