Refine your search:     
Report No.
 - 

Dynamic properties on $$^{99}$$Mo adsorption and $$^{rm 99m}$$Tc elution with alumina columns

Fujita, Yoshitaka   ; Seki, Misaki  ; Sano, Tadafumi*; Fujihara, Yasuyuki*; Suzuki, Tatsuya*; Yoshinaga, Hisao*; Hori, Junichi*; Suematsu, Hisayuki*; Tsuchiya, Kunihiko 

Technetium-99m ($$^{rm 99m}$$Tc), the daughter nuclide of Molybdenum-99 ($$^{99}$$Mo), is the most commonly used radioisotope in radiopharmaceuticals. The research and development (R&D) for the production of $$^{99}$$Mo by the neutron activation method ((n, $$gamma$$) method) has been carried out from viewpoints of no-proliferation and nuclear security, etc. Since the specific activity of $$^{99}$$Mo produced by the (n, $$gamma$$) method is extremely low, developing Al$$_{2}$$O$$_{3}$$ with a large Mo adsorption capacity is necessary to adapt (n, $$gamma$$)$$^{99}$$Mo to the generator. In this study, three kinds of Al$$_{2}$$O$$_{3}$$ specimens with different raw materials were prepared and compared their adaptability to generators by static and dynamic adsorption. MoO$$_{3}$$ pellet pieces (1.5g) were irradiated with 5 MW for 20 min in the Kyoto University Research Reactor (KUR). Irradiated MoO$$_{3}$$ pellet pieces were dissolved in 6M-NaOH aq. In dynamic adsorption, 1 g of Al$$_{2}$$O$$_{3}$$ was filled into a PFA tube ($$phi$$1.59 mm). The $$^{99}$$Mo adsorption capacity of Al$$_{2}$$O$$_{3}$$ specimens under dynamic condition was slightly reduced compared to that under static condition. The $$^{rm 99m}$$Tc elution rate was about 100% at 1.5 mL of milking in dynamic adsorption, while it was around 56-87% in static adsorption. The $$^{99}$$Mo/$$^{rm 99m}$$Tc ratio of dynamic condition was greatly reduced compared to that of static condition. Therefore, the $$^{rm 99m}$$Tc elution property is greatly affected by the method of adsorbing Mo, e.g., the column shape, the linear flow rate, etc.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.