検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年

Dimensional reduction by geometrical frustration in a cubic antiferromagnet composed of tetrahedral clusters

大熊 隆太郎*; 古府 麻衣子  ; 浅井 晋一郎*; Avdeev, M.*; 幸田 章宏*; 岡部 博孝*; 平石 雅俊*; 竹下 聡史*; 小嶋 健児*; 門野 良典*; 益田 隆嗣*; 中島 健次  ; 廣井 善二*

Okuma, Ryutaro*; Kofu, Maiko; Asai, Shinichiro*; Avdeev, M.*; Koda, Akihiro*; Okabe, Hirotaka*; Hiraishi, Masatoshi*; Takeshita, Soshi*; Kojima, Kenji*; Kadono, Ryosuke*; Masuda, Takatsugu*; Nakajima, Kenji; Hiroi, Zenji*

Dimensionality is a critical factor in determining the properties of solids and is an apparent built- in character of the crystal structure. However, it can be an emergent and tunable property in geometrically frustrated spin systems. Here, we study the spin dynamics of the tetrahedral cluster antiferromagnet, pharmacosiderite, via muon spin resonance and neutron scattering. We find that the spin correlation exhibits a two-dimensional characteristic despite the isotropic connectivity of tetrahedral clusters made of spin 5/2 Fe$$^{3+}$$ ions in the three-dimensional cubic crystal, which we ascribe to two-dimensionalisation by geometrical frustration based on spin wave calculations. Moreover, we suggest that even one-dimensionalisation occurs in the decoupled layers, generating low-energy and one-dimensional excitation modes, causing large spin fluctuation in the classical spin system.

Access

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.