検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年

Development of the numerical simulation method for molten core behavior in lower head based on MPS method

MPS法による下部ヘッドにおける溶融燃料挙動解析手法の開発

永武 拓 ; 吉田 啓之  

Nagatake, Taku; Yoshida, Hiroyuki

燃料溶融事故において溶融燃料が下部ヘッド内に滞留し、発熱することにより自然対流が発生する。この際溶融燃料が圧力容器に熱負荷を与えることにより圧力容器が破損し、圧力容器外部に溶融燃料が流出する可能性が指摘されている。このため、事故進展の予測やIVR等の集合体内に燃料を留めるための安全対策において、下部ヘッド内における溶融燃料挙動を把握することが重要となる。本研究では、原子力機構で開発しているMPS法による粒子法解析コードPOPCORNをもとに、下部ヘッド内の溶融燃料挙動解析手法の開発を行っている。本研究では検証データとして、スウェーデンKTHで行われているSIMECO試験を使用している。SIMECO試験では、実機形状断面を模擬し、直径50cmの半円と高さ23cmの壁面部から成る試験部に水やパラフィン等の模擬燃料物質を使用し、内部の温度分布計測を行っている。本発表では、模擬燃料物質として水を用いた試験の模擬解析を行い、中心線上の温度分布及び流体壁面間の熱流束を比較した。結果、上部の温度分布は良い一致を示した一方、特に底面付近での温度分布及び全領域での熱流束の差異が見られた。これは計算における熱伝達の誤評価が主な原因として考えられる。今後本結果を基に、熱伝達モデルの改良を含むPOPCORNの開発を継続し、精度向上を目指す。

A core melt accident occurs, and a molten core accumulates in the bottom of the lower head of the RPV in some severe accident scenarios of LWRs. The decay heat heats a molten core pool and puts a heat load on the wall of RPV. As a result, RPV is damaged, and the molten core flows out. Then, an understanding a molten core behavior in a lower head of RPV is important to predict the progress of severe accidents and optimize a safety management method such as the IVR. In this study, we have been developing a numerical simulation method for simulating a molten core behavior in the lower head of LWR based on POPCORN code, which has been developed in JAEA based on the MPS method. As for the validation experiment, we chose the SIMECO experiment. The SIMECO experiment has been performed in KTH to obtain validation data of natural convection behavior in the lower head of LWR. In the SIMECO experiment, several different types of fluids are used as working fluids in the SIMECO experiments. In this study, we selected a natural convection behavior inside the simulated lower head in SIMECO water-test. And the temperature distributions on the center line and heat flux between fluid and wall were compared as the first step of validation. The numerical results of the temperature distribution in the upper region were in good agreement with the experimental results. On the other hands, the numerical results of temperature in the lower region were higher than the experimental results. And the numerical results of heat flux were different from experimental results (lower in the upper region and higher in the lower region). Then it is thought that one of the reasons for the temperature difference in the lower region is the misevaluation of heat flux between fluid and wall. Then, in future work, the development of POPCORN code is continued, including improvement of a heat transfer model between fluid and solid wall, to perform more accurate simulation.

Access

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.