Refine your search:     
Report No.
 - 

Extraction properties of trivalent rare earth ions from nitric acid using a triamide-amine extractant

Uchino, Seiko*; Narita, Hirokazu*; Kita, Keisuke*; Suzuki, Hideya*; Matsumura, Tatsuro  ; Naganawa, Hirochika*  ; Sakaguchi, Koichi*; Oto, Keisuke*

The extraction of trivalent rare earth ions (RE$$^{3+}$$) from HNO$$_{3}$$ solution using a triamide amine, tris(N,N-di-2-ethylhexyl-ethylamide)amine (DEHTAA), was conducted, and the extraction mechanism was estimated from extraction behavior of HNO$$_{3}$$ and RE$$^{3+}$$ and the relationship between atomic number and extraction percentages (E%) for RE$$^{3+}$$. A DEHTAA molecule dominantly formed a DEHTAA HNO$$_{3}$$ at 1.0 M HNO$$_{3}$$ and a DEHTAA(HNO$$_{3}$$)$$_{2}$$ at 6.0 M HNO$$_{3}$$ in the acid-equilibrated organic phase. This would provide the unique dependence of E% for the light RE$$^{3+}$$ on the HNO$$_{3}$$ concentration, in which the E% value had a minimum and maximum at $$sim$$0.5 M and $$sim$$2 M HNO$$_{3}$$, respectively. The results of the slope analyses for the distribution ratios for RE$$^{3+}$$ suggested that the dominant RE$$^{3+}$$ complex was RE(NO$$_{3}$$)$$_{3}$$DEHTAA(DEHTAA HNO$$_{3}$$) at 1.0 M HNO$$_{3}$$. The E% for RE$$^{3+}$$ decreased from La$$^{3+}$$ to Lu$$^{3+}$$ at 1.0 M HNO$$_{3}$$; on the other hand, those increased from La$$^{3+}$$ to Nd$$^{3+}$$ at 0.25 M and from La$$^{3+}$$ to Sm$$^{3+}$$ and 6.0 M HNO$$_{3}$$.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.