Refine your search:     
Report No.
 - 

Measurement of spent nuclear fuel burn-up using a new H$$(n,gamma)$$ method

Nauchi, Yasushi*; Sato, Shunsuke*; Hayakawa, Takehito*; Kimura, Yasuhiko; Suyama, Kenya; Kashima, Takao*; Futakami, Kazuhiro*

Measurement of neutrons from spent nuclear fuel is performed in this study using the H$$(n,gamma)$$ method, which detects 2.223 MeV $$gamma$$ rays from neutron capture reaction of hydrogen using a highly pure germanium (HPGe) detector. The detection of the 2.223 MeV $$gamma$$ ray is affected by intense $$gamma$$ ray emission from fission products (FPs) because the emission rate of $$gamma$$ rays from the FP is seven orders of magnitude higher than the emission rate of neutrons. To shield the intense $$gamma$$ ray from the FP, the HPGe detector is placed off the axis of a collimator, whereas a polyethylene block is placed on the axis. In this geometry, the detector is shielded from the intense $$gamma$$ rays from the FP, but the detector can measure 2.223 MeV $$gamma$$ rays from the H$$(n,gamma)$$ reactions in the polyethylene block. The measured count rate of the 2.223 MeV $$gamma$$ rays is consistent with the expected rate within the statistical error, which is calculated based on the nuclide composition, which is primary $$^{244}$$Cm, estimated via depletion and decay calculations. Accordingly, the H$$(n,gamma)$$ method is considered feasible to quantify the number of neutron leakage from spent nuclear fuel assembly, which is applicable to certify burn up of the assembly.

Accesses

:

- Accesses

InCites™

:

Percentile:0.02

Category:Instruments & Instrumentation

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.