検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年

Tensile response of as-cast CoCrFeNi and CoCrFeMnNi high-entropy alloys

CoCrFeNi, CoCrFeMnNi高エントロピー合金鋳造材の引張応答

Lam, T.-N.*; Luo, M.-Y.*; 川崎 卓郎   ; Harjo, S.   ; Jain, J.*; Lee, S.-Y.*; Yeh, A.-C.*; Huang, E.-W.*

Lam, T.-N.*; Luo, M.-Y.*; Kawasaki, Takuro; Harjo, S.; Jain, J.*; Lee, S.-Y.*; Yeh, A.-C.*; Huang, E.-W.*

In this research, we systematically investigated equiatomic CoCrFeNi and CoCrFeMnNi high-entropy alloys (HEAs). Both of these HEA systems are single-phase, face-centered-cubic (FCC) structures. Specifically, we examined the tensile response in as-cast quaternary CoCrFeNi and quinary CoCrFeMnNi HEAs at room temperature. Compared to CoCrFeNi HEA, the elongation of CoCrFeMnNi HEA was 14% lower, but the yield strength and ultimate tensile strength were increased by 17% and 6%, respectively. The direct real-time evolution of structural defects during uniaxial straining was acquired via in situ neutron-diffraction measurements. The dominant microstructures underlying plastic deformation mechanisms at each deformation stage in as-cast CoCrFeNi and CoCrFeMnNi HEAs were revealed using the Convolutional Multiple Whole Profile (CMWP) software for peak-profile fitting. The possible mechanisms are reported.

Access

:

- Accesses

InCites™

:

パーセンタイル:88.59

分野:Crystallography

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.