Refine your search:     
Report No.
 - 

Thermodynamic analysis for solidification path of simulated ex-vessel corium

Sato, Takumi ; Nagae, Yuji ; Kurata, Masaki ; Quaini, A.*; Gu$'e$neau, C.*

Investigation of the primary containment vessel inside the Fukushima Daiichi Nuclear Power Station showed that a significant amount of the molten corium reached the bottom of the pedestal region. The molten corium and concrete likely caused a complex interaction called Molten Corium Concrete Interaction. The solidification hysteresis of these ex-vessel debris significantly influences its properties. We performed a thermodynamic analysis using the TAF-ID database to infer the solidification path of U-Zr-Al-Ca-Si-O molten corium, which was chosen for a prototypic system of ex-vessel debris. The solidification path for the CaO-rich sim-corium showed that (i) melting as a single liquid phase above 2430 K, (ii) selective solidification of the oxide-rich corium mainly consisted of fuel materials, and (iii) solidification of the remaining materials as a silicate matrix. In contrast, the solidification path for the SiO$$_{2}$$-rich corium indicated that (i) formation of liquid miscibility gap above 2200 K between U-rich and Zr-rich oxidic melts, (ii) individual precipitation of solid phases in each liquid phase.

Accesses

:

- Accesses

InCites™

:

Percentile:0.01

Category:Thermodynamics

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.