Refine your search:     
Report No.
 - 

Formation of high-quality SiO$$_{2}$$/GaN interfaces with suppressed Ga-oxide interlayer via sputter deposition of SiO$$_{2}$$

Onishi, Kentaro*; Kobayashi, Takuma*; Mizobata, Hidetoshi*; Nozaki, Mikito*; Yoshigoe, Akitaka ; Shimura, Takayoshi*; Watanabe, Heiji*

While the formation of an GaO$$_{x}$$ interlayer is key to achieving SiO$$_{2}$$/GaN interfaces with low defect density, it can affect the reliability and stability of metal-oxide-semiconductor (MOS) devices if the annealing conditions are not properly designed. In the present study, we aimed to minimize the growth of the GaO$$_{x}$$ layer on the basis of the sputter deposition of SiO$$_{2}$$ on GaN. Synchrotron radiation X-ray photoelectron spectrometry measurements confirmed the suppressed growth of the GaO$$_{x}$$ layer compared with a SiO$$_{2}$$/GaN structure formed by plasma-enhanced chemical vapor deposition. Negligible GaO$$_{x}$$ growth was also observed when subsequent oxygen annealing up to 600$$^{circ}$$C was performed. A MOS device with negligible capacitance-voltage hysteresis, nearly ideal flat-band voltage, and low leakage current was demonstrated by performing oxygen and forming gas annealing at temperatures of 600$$^{circ}$$C and 400$$^{circ}$$C, respectively.

Accesses

:

- Accesses

InCites™

:

Percentile:58.64

Category:Physics, Applied

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.