Horonobe Underground Research Laboratory Project; Investigation program for the 2023 fiscal year
Nakayama, Masashi
The Horonobe Underground Research Laboratory (URL) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant technologies for geological disposal of high-level radioactive waste through investigating the deep geological environment within the host sedimentary rocks at Horonobe Town in Hokkaido, north Japan. In the fiscal year 2023, we continue R&D on "Study on near-field system performance in geological environment", "Demonstration of repository design options", and "Understanding of buffering behaviour of sedimentary rocks to natural perturbations". These are identified as key R&D challenges to be tackled in the Horonobe underground research plan for the fiscal year 2020 onwards. In the "Study on near-field system performance in geological environment", we conduct the coupled analysis on the full-scale engineered barrier system performance experiment and test the coupled simulation code through comparison with different simulation codes in the international DECOVALEX-2023 collaboration project. Borehole investigations are also carried out for solute transport experiments in the Koetoi Formation. As for "Demonstration of repository design concept", we carry out in situ experiments and data analysis on concrete deterioration under the subsurface conditions. Geophysical surveys are also carried out around an experimental tunnel to be newly excavated at the 350m gallery and characterise the initial conditions of the excavation damaged zone. For the "Understanding of buffering behaviour of sedimentary rocks to natural perturbations", we analyse the results of the hydraulic disturbance tests conducted in previous years and understand the relationship between rock stress / stress state and fault / fracture hydraulic connectivity. Concerning the construction and maintenance of the subsurface facilities, the 350 m gallery is extended and shafts are sank to a depth of 500 m.