Cell-cycle dependence on the biological effects of boron neutron capture therapy and its modification by polyvinyl alcohol
Matsuya, Yusuke
; Sato, Tatsuhiko
; Kusumoto, Tamon*; Yachi, Yoshie*; Seino, Ryosuke*; Miwa, Misako*; Ishikawa, Masayori*; Matsuyama, Shigeo*; Fukunaga, Hisanori*
Boron neutron capture therapy (BNCT) is a unique radiotherapy to selectively eradicate tumor cells using boron compounds (e.g., 4-borono-L-phenylalanine [BPA]) that are heterogeneously taken up at the cellular level. However, the impacts of tempo-spatial heterogenicity on cell killing remain unclear. With the technical combination of radiation track detector, cell cycle analysis, and biophysical simulations, we demonstrated the cell cycle-dependent heterogenicity of BPA uptake and following biological impacts of
B(n,
)
Li reactions in HeLa cells expressing Fluorescent Ubiquitination-based Cell Cycle Indicators (FUCCI), as well as its modification effects of polyvinyl alcohol (PVA). As a result, we revealed that the intracellular BPA concentration in the S/G2/M phase was higher than that in the G1/S phase and that PVA modified the cell cycle dependence. Further, these findings lead to the development of the first BPA-PVA-based model for predicting BNCT treatment effects. These outcomes may contribute to more precision of therapeutic efficacy, when BNCT is combined with PVA and/or cell cycle-specific anticancer agents.