Refine your search:     
Report No.
 - 

Stable photoelectrochemical reactions at solid/solid interfaces toward solar energy conversion and storage

Watanabe, Kenta*; Horisawa, Yuhei*; Yoshimoto, Masataka*; Tamura, Kazuhisa   ; Suzuki, Kota*; Kanno, Ryoji*; Hirayama, Masaaki*

Electrochemistry has extended from reactions at solid/liquid interfaces to those at solid/solid interfaces. In this study, we achieve the stable photoelectrochemical reaction at the semiconductor-electrode/solid-electrolyte interface in Nb-doped anatase-TiO$$_{2}$$ (a-TiO$$_{2}$$:Nb)/Li$$_{3}$$PO$$_{4}$$ (LPO)/Li all-solid-state cell. The oxidative currents of a-TiO$$_{2}$$:Nb/LPO/Li increase upon light irradiation when a-TiO$$_{2}$$:Nb is located at a potential that is more positive than its flat-band potential. The photoelectrochemical reaction at the semiconductor/solid-electrolyte interface is driven by the same principle as that at semiconductor/liquid-electrolyte interfaces. Thus, we extend photoelectrochemistry to all-solid-state systems composed of solid/solid interfaces.

Accesses

:

- Accesses

InCites™

:

Percentile:0.02

Category:Chemistry, Multidisciplinary

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.