SRPES and XPS analysis of activation and deterioration processes for Ti-Zr-V NEG coating
Kamiya, Junichiro
; Abe, Kazuhide; Fujimori, Shinichi
; Fukuda, Tatsuo
; Kobata, Masaaki
; Morohashi, Yuko
; Tsuda, Yasutaka
; Yamada, Ippei
; Yoshigoe, Akitaka 
The activation and deterioration mechanisms of the Ti-Zr-V non-evaporable getter (NEG) coating have been investigated. Operando analysis of the surface chemical composition change of the Ti-Zr-V coating was performed by the synchrotron radiation photoelectron spectroscopy (SRPES) during the process of raising the sample temperature to 250
C, corresponding to the activation process of NEG coating. The surface oxidation process was also characterized by the SRPES during the injection of O_2 gas into the chamber while keeping the sample temperature at 250
C, corresponding to the deterioration process of NEG coating, i.e. surface oxidation and oxygen diffusion to the coating interior. The depth profile of the oxidized sample was measured with X-ray photoelectron spectroscopy. The results shows, in the activation process, the surface Zr gets the oxygen from the oxides of Ti and V at the first stage, resulting in the metallic Ti and V on the surface, and the oxygen of the Zr-oxide and/or Zr sub-oxides diffuse to the interior of the coating in the continuous temperature rise, resulting in the metallic Zr on the surface. It is further suggested that the deterioration of the Ti-Zr-V NEG coating means the Zr and secondary Ti are oxidized deep into the coating, resulting in the restriction of the oxygen migration from the NEG compositions on the surface and consequently the lack of surface metallization.