Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Asamori, Koichi; Sueoka, Shigeru; Komatsu, Tetsuya; Ogata, Manabu; Uchida, Mao; Nishiyama, Nariaki; Tanaka, Kiriha; Kobayashi, Tomoharu; Mitsuguchi, Takehiro; Murakami, Osamu; et al.
JAEA-Review 2025-035, 29 Pages, 2025/10
This report is a plan of research and development (R&D) on geosphere stability for long-term isolation of high-level radioactive waste (HLW) in Japan Atomic Energy Agency (JAEA), in fiscal year 2025. The objectives and contents of this research are described in detail based on the JAEA 4th Medium- and Long-term Plan (fiscal years 2022-2028). In addition, the background of this research is described from the necessity and the significance for site investigation and safety assessment, and the past progress. The plan framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques.
Iketani, Shotaro; Suzuki, Takeshi; Yokobori, Tomohiko; Sugawara, Satoshi; Yokota, Akira; Kikuchi, Genta; Muraguchi, Yoshinori; Kitahara, Masaru; Seya, Manato; Kurosawa, Tsuyoshi; et al.
JAEA-Technology 2025-001, 169 Pages, 2025/08
The radioactive waste treatment facilities at the Nuclear Science Research Institute includes the Radioactive Waste Treatment Facility No. 3, Waste Size Reduction and Storage Facility, and Waste Volume Reduction Facility. These three facilities come under the purview of the Act on the Regulation of Nuclear Source Material, Nuclear Fuel Material and Reactors, and are included under Class C of the act based on the seismic requirements specified in the Act. We assessed the seismic capacity of these three radioactive waste treatment facilities based on the current Building Standards Act, to verify whether they comply with the new regulatory requirements enforced by the Nuclear Regulation Authority (NRA) in the aftermath of the 2011 nuclear accident at the Fukushima Daiichi Nuclear Power Station operated by the Tokyo Electric Power Company. We found that the allowable stress of a few structural members used in the construction of the facilities did not meet the regulatory requirements. After studying the approval granted by the NRA for the construction plans, including the design and construction methods (design and construction plans) of the three facilities on March 5, 2021, we made aseismic reinforcement at these facilities between 2021 and 2022. This report presents an overview of the seismic design of these facilities and an outline of the aseismic reinforcement conducted, management system existing, safety measures adopted, and the preoperational inspections conducted at these facilities.
Katsumura, Kosuke*; Takagi, Junichi*; Hosomi, Kenji*; Miyahara, Naoya*; Koma, Yoshikazu; Imoto, Jumpei; Karasawa, Hidetoshi; Miwa, Shuhei; Shiotsu, Hiroyuki; Hidaka, Akihide*; et al.
Nihon Genshiryoku Gakkai-Shi ATOMO
, 65(11), p.674 - 679, 2023/11
no abstracts in English
Kamiya, Junichiro; Takano, Kazuhiro*; Wada, Kaoru; Yanagibashi, Toru*
e-Journal of Surface Science and Nanotechnology (Internet), 21(3), p.144 - 153, 2023/06
no abstracts in English
Yamamoto, Kazami; Kinsho, Michikazu; Hayashi, Naoki; Saha, P. K.; Tamura, Fumihiko; Yamamoto, Masanobu; Tani, Norio; Takayanagi, Tomohiro; Kamiya, Junichiro; Shobuda, Yoshihiro; et al.
Journal of Nuclear Science and Technology, 59(9), p.1174 - 1205, 2022/09
Times Cited Count:8 Percentile:71.02(Nuclear Science & Technology)In the Japan Proton Accelerator Research Complex, the purpose of the 3 GeV rapid cycling synchrotron (RCS) is to accelerate a 1 MW, high-intensity proton beam. To achieve beam operation at a repetition rate of 25 Hz at high intensities, the RCS was elaborately designed. After starting the RCS operation, we carefully verified the validity of its design and made certain improvements to establish a reliable operation at higher power as possible. Consequently, we demonstrated beam operation at a high power, namely, 1 MW. We then summarized the design, actual performance, and improvements of the RCS to achieve a 1 MW beam.
Kamiya, Junichiro; Takano, Kazuhiro*; Yuza, Hiromu*; Wada, Kaoru
e-Journal of Surface Science and Nanotechnology (Internet), 20(2), p.107 - 118, 2022/05
no abstracts in English
Wada, Yuki*; Matsumoto, Takahiro*; Enoto, Teruaki*; Nakazawa, Kazuhiro*; Yuasa, Takayuki*; Furuta, Yoshihiro*; Yonetoku, Daisuke*; Sawano, Tatsuya*; Okada, Go*; Nanto, Hidehito*; et al.
Physical Review Research (Internet), 3(4), p.043117_1 - 043117_31, 2021/12
Kamiya, Junichiro; Kotoku, Hirofumi*; Kurosawa, Shunta*; Takano, Kazuhiro; Yanagibashi, Toru*; Yamamoto, Kazami; Wada, Kaoru
Physical Review Accelerators and Beams (Internet), 24(8), p.083201_1 - 083201_23, 2021/08
Times Cited Count:1 Percentile:0.00(Physics, Nuclear)Through the operation of the vacuum system in J-PARC, it becomes evident that the high-power beam has more powerful effects on the vacuum system than expected. Those effects are the malfunction of vacuum equipment and the large pressure rise. The former is the failure of the turbomolecular pump (TMP) controller. The TMP itself is also damaged by a bearing crush due to a touch-down. We have developed a TMP controller that can connect with long cables of more than 200 m lengths to install the controller in a control room where there is no radiation influence. The TMP with high-strength bearing has been also developed. The latter is an extreme pressure rise with increasing the beam power. It is indicated that the pressure rise mechanism is a result of ion-stimulated gas desorption. It is finally confirmed that the dynamic pressure during the high-power beam is effectually suppressed by additionally installing the NEG pumps.
Kamiya, Junichiro; Takano, Kazuhiro; Yuza, Hiromu*; Wada, Kaoru
Proceedings of 12th International Particle Accelerator Conference (IPAC 21) (Internet), p.3471 - 3474, 2021/08
The NEG coating, which has been developed in CERN, is a revolutionary technique that can make a beam pipe act as a vacuum pump by coating the getter materials with the ability to adsorb/absorb gas molecules on the beam pipe surface. The NEG materials are alloys of titanium, zirconium, and vanadium. Titanium is one of the getter materials. In high-power beam accelerators, titanium has been used as the beam pipe chamber material due to its low radioactivation characteristics. The ordinal titanium surface has no getter function because it is covered with titanium-oxide film. The new technique, which removes the titanium-oxide surface by the sputtering and makes the titanium vacuum chamber itself the vacuum pump like NEG coated chamber, has been developed. After sputtering the inner surface of the titanium chamber, we obtained clear evidence that shows the chamber acts as a vacuum pump. We have also tried to make a titanium chamber with a getter function only by baking. Dependence of the getter characteristics on the baking temperature will also be reported.
Kitazato, Kohei*; Milliken, R. E.*; Iwata, Takahiro*; Abe, Masanao*; Otake, Makiko*; Matsuura, Shuji*; Takagi, Yasuhiko*; Nakamura, Tomoki*; Hiroi, Takahiro*; Matsuoka, Moe*; et al.
Nature Astronomy (Internet), 5(3), p.246 - 250, 2021/03
Times Cited Count:60 Percentile:95.95(Astronomy & Astrophysics)Here we report observations of Ryugu's subsurface material by the Near-Infrared Spectrometer (NIRS3) on the Hayabusa2 spacecraft. Reflectance spectra of excavated material exhibit a hydroxyl (OH) absorption feature that is slightly stronger and peak-shifted compared with that observed for the surface, indicating that space weathering and/or radiative heating have caused subtle spectral changes in the uppermost surface. However, the strength and shape of the OH feature still suggests that the subsurface material experienced heating above 300
C, similar to the surface. In contrast, thermophysical modeling indicates that radiative heating does not increase the temperature above 200
C at the estimated excavation depth of 1 m, even if the semimajor axis is reduced to 0.344 au. This supports the hypothesis that primary thermal alteration occurred due to radiogenic and/or impact heating on Ryugu's parent body.
Yuasa, Takayuki*; Wada, Yuki*; Enoto, Teruaki*; Furuta, Yoshihiro; Tsuchiya, Harufumi; Hisadomi, Shohei*; Tsuji, Yuna*; Okuda, Kazufumi*; Matsumoto, Takahiro*; Nakazawa, Kazuhiro*; et al.
Progress of Theoretical and Experimental Physics (Internet), 2020(10), p.103H01_1 - 103H01_27, 2020/10
Times Cited Count:15 Percentile:67.55(Physics, Multidisciplinary)Itoi, Hiroyuki*; Ninomiya, Takeru*; Hasegawa, Hideyuki*; Maki, Shintaro*; Sakakibara, Akihiro*; Suzuki, Ryutaro*; Kasai, Yuto*; Iwata, Hiroyuki*; Matsumura, Daiju; Owada, Mao*; et al.
Journal of Physical Chemistry C, 124(28), p.15205 - 15215, 2020/07
Times Cited Count:9 Percentile:33.23(Chemistry, Physical)Wada, Yuki*; Enoto, Teruaki*; Nakazawa, Kazuhiro*; Furuta, Yoshihiro; Yuasa, Takayuki*; Nakamura, Yoshitaka*; Morimoto, Takeshi*; Matsumoto, Takahiro*; Makishima, Kazuo*; Tsuchiya, Harufumi
Physical Review Letters, 123(6), p.061103_1 - 061103_6, 2019/08
Times Cited Count:43 Percentile:87.67(Physics, Multidisciplinary)Wada, Yuki*; Enoto, Teruaki*; Nakamura, Yoshitaka*; Furuta, Yoshihiro; Yuasa, Takayuki*; Nakazawa, Kazuhiro*; Morimoto, Takeshi*; Sato, Mitsuteru*; Matsumoto, Takahiro*; Yonetoku, Daisuke*; et al.
Communications Physics (Internet), 2(1), p.67_1 - 67_9, 2019/06
Times Cited Count:62 Percentile:92.54(Physics, Multidisciplinary)
-site randomness on the antiferroelectric/relaxor nature of the ground state; Diffuse and inelastic X-ray scattering study of Pb(In
Nb
)O
Owada, Kenji*; Tsukada, Shinya*; Fukuda, Tatsuo; Tsutsui, Satoshi*; Baron, A. Q. R.*; Mizuki, Junichiro*; Owa, Hidehiro*; Yasuda, Naohiko*; Terauchi, Hikaru*
Physical Review B, 98(5), p.054106_1 - 054106_10, 2018/08
Times Cited Count:4 Percentile:17.65(Materials Science, Multidisciplinary)Unno, Masayoshi*; Sugishima, Masakazu*; Wada, Kei*; Hagiwara, Yoshinori*; Kusaka, Katsuhiro*; Tamada, Taro; Fukuyama, Keiichi*
Nihon Kessho Gakkai-Shi, 57(5), p.297 - 303, 2015/10
Bilin compounds are fundamentally important for oxygenic photosynthetic organisms, because they are utilized as pigments for photosynthesis (phycobilins) and photoreceptors (phytochromobilin). Phycocyanobilin (PCB), a phycobilin, comprises the chromophore of algal phytochromes and the core phycobiliprotein antennae of cyanobacteria and red algae. PCB is biosynthesized by a member of the ferredoxin-dependent bilin reductase family, phycocyanobilin:ferredoxin oxidoreductase (PcyA). In the present study, we determined the neutron crystal structure of PcyA in complex with its substrate biliverdin (BV). This neutron structure revealed the protonation state of BV and the surrounding residues. We found that two forms of BV, neutral BV and protonated BVH
, were coupled with the two conformation/protonation states of the essential residue Asp105. Further, His88 and His74 near BV were singly protonated and were connected with an intervening hydronium ion. Neutron analysis also revealed how X-ray irradiation of the PcyA-BV crystal altered the structure of the PcyA-BV complex.
Wada, Ryutaro*; Iguchi, Yukihiro
Gijutsushi, 27(4), p.12 - 15, 2015/04
The geological disposal project of high level radioactive waste (HLW) is one of the important problems in the energy policy of Japan. We show the outline of the lecture about the current technologies and activities for the geological disposal project by an invited speakers of Nuclear Waste Management Organization of Japan (NUMO), which is in charge of the project.
Unno, Masayoshi*; Ishikawa, Kumiko*; Kusaka, Katsuhiro*; Tamada, Taro; Hagiwara, Yoshinori*; Sugishima, Masakazu*; Wada, Kei*; Yamada, Taro*; Tomoyori, Katsuaki; Hosoya, Takaaki*; et al.
Journal of the American Chemical Society, 137(16), p.5452 - 5460, 2015/04
Times Cited Count:29 Percentile:62.36(Chemistry, Multidisciplinary)Phycocyanobilin, a light-harvesting and photoreceptor pigment in higher plants, algae, and cyanobacteria, is synthesized from biliverdin IX
(BV) by phycocyanobilin:ferredoxin oxidoreductase (PcyA) via two steps of two-proton-coupled two-electron reduction. We determined the neutron structure of PcyA from cyanobacteria complexed with BV, revealing the exact location of the hydrogen atoms involved in catalysis. Notably, approximately half of the BV bound to PcyA was BVH
, a state in which all four pyrrole nitrogen atoms were protonated. The protonation states of BV complemented the protonation of adjacent Asp105. The "axial "water molecule that interacts with the neutral pyrrole nitrogen of the A-ring was identified. His88 N
was protonated to form a hydrogen bond with the lactam O atom of the BV A-ring. His88 and His74 were linked by hydrogen bonds via H
O
. These results imply that Asp105, His88, and the axial water molecule contribute to proton transfer during PcyA catalysis.
Akiyama, Kazuki; Takahashi, Masanori; Tsukamoto, Masaki*; Miyauchi, Yoshihiro*; Wada, Hiroshi*
Nihon Genshiryoku Gakkai-Shi ATOMO
, 56(10), p.656 - 660, 2014/10
This report shows the yield of low-level radioactive wastes and high-level radioactive wastes at the nuclear power plant and reprocessing plant, and those detailed managements are reported.
and KNbO
solid solutionYoneda, Yasuhiro; Kohara, Shinji*; Kumada, Nobuhiro*; Wada, Satoshi*
Japanese Journal of Applied Physics, 53(9S), p.09PD01_1 - 09PD01_5, 2014/09
Times Cited Count:4 Percentile:16.77(Physics, Applied)The atomic-scale structure of solid solution of BaTiO
(BT) and KNbO
(KN) has been studied using high-energy X-ray diffraction, X-ray absorption fine structure, and atomic pair-distribution function analysis techniques. We prepared BT-KN solid solution through KNbTiO
, in which Ti and Nb atoms are arranged randomly. The average structure of BT-KN solid solution was cubic structure and the local strcuture is also reproduced by the cubic structure. It is rare that a solid solution synthesized from ferroelectric materials has a local strcuture of a paraelectric material. Since the original correlation of BT or KN was lost, ferroelectricity disappeared in the BT-KN solid solution.