Refine your search:     
Report No.
 - 
Search Results: Records 1-6 displayed on this page of 6
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Structural changes in pH-responsive gelatin/hydroxypropyl methylcellulose phthalate blends aimed at drug-release systems

Nogami, Satoshi*; Kadota, Kazunori*; Uchiyama, Hiromasa*; Arima-Osonoi, Hiroshi*; Iwase, Hiroki*; Tominaga, Taiki*; Yamada, Takeshi*; Takata, Shinichi; Shibayama, Mitsuhiro*; Tozuka, Yuichi*

International Journal of Biological Macromolecules, 190, p.989 - 998, 2021/11

 Times Cited Count:6 Percentile:44.18(Biochemistry & Molecular Biology)

Journal Articles

Three-dimensional cellular premixed flames generated by hydrodynamic and diffusive-thermal instabilities (Effects of unburned-gas temperature and heat loss)

Kadowaki, Satoshi; Nogami, Masato*; Thwe Thwe, A.; Katsumi, Toshiyuki*; Yamazaki, Wataru*; Kobayashi, Hideaki*

Nihon Kikai Gakkai Rombunshu (Internet), 85(879), p.19-00274_1 - 19-00274_13, 2019/11

We dealt with three-dimensional cellular premixed flames generated by hydrodynamic and diffusive-thermal instabilities to elucidate the effects of unburned-gas temperature and heat loss by adopting the three-dimensional compressible Navier-Stokes equation. As the unburned-gas temperature became lower and the heat loss became larger, the growth rate decreased and the unstable range narrowed. With a decrease of unburned-gas temperature, the normalized growth rate increased and the normalized unstable range widened, which was because the temperature ratio of burned and unburned gases became larger. The obtained hexagonal cellular fronts were qualitatively consistent with the experimental results. As the heat loss became larger, the burning velocity of a cellular flame normalized by that of a planar flame increased. This was because diffusive-thermal effects became stronger owing to the increase of apparent Zeldovich number caused by the decrease of flame temperature.

Journal Articles

Recent progress in the energy recovery linac project in Japan

Sakanaka, Shogo*; Akemoto, Mitsuo*; Aoto, Tomohiro*; Arakawa, Dai*; Asaoka, Seiji*; Enomoto, Atsushi*; Fukuda, Shigeki*; Furukawa, Kazuro*; Furuya, Takaaki*; Haga, Kaiichi*; et al.

Proceedings of 1st International Particle Accelerator Conference (IPAC '10) (Internet), p.2338 - 2340, 2010/05

Future synchrotron light source using a 5-GeV energy recovery linac (ERL) is under proposal by our Japanese collaboration team, and we are conducting R&D efforts for that. We are developing high-brightness DC photocathode guns, two types of cryomodules for both injector and main superconducting (SC) linacs, and 1.3 GHz high CW-power RF sources. We are also constructing the Compact ERL (cERL) for demonstrating the recirculation of low-emittance, high-current beams using above-mentioned critical technologies.

Journal Articles

Progress in R&D efforts on the energy recovery linac in Japan

Sakanaka, Shogo*; Ago, Tomonori*; Enomoto, Atsushi*; Fukuda, Shigeki*; Furukawa, Kazuro*; Furuya, Takaaki*; Haga, Kaiichi*; Harada, Kentaro*; Hiramatsu, Shigenori*; Honda, Toru*; et al.

Proceedings of 11th European Particle Accelerator Conference (EPAC '08) (CD-ROM), p.205 - 207, 2008/06

Future synchrotron light sources based on the energy-recovery linacs (ERLs) are expected to be capable of producing super-brilliant and/or ultra-short pulses of synchrotron radiation. Our Japanese collaboration team is making efforts for realizing an ERL-based hard X-ray source. We report recent progress in our R&D efforts.

JAEA Reports

MK-III Modification work of heat transport system in JOYO; Dismantling and sodium cleaning of secondary cooling system components

Ishii, Takayuki; Isozaki, Kazunori; Ashida, Takashi; Minakawa, Satoru; Terakado, Tsuguo; Nogami, Hiroshi*; Kakurai, Katsuhiko*; Ueda, Soji*; Kawahara, Hirotaka; Ichige, Satoshi; et al.

JNC TN9410 2002-013, 86 Pages, 2002/11

JNC-TN9410-2002-013.pdf:68.29MB

The MK-III project has been proceeding to improve the irradiation capability of the experimental fast reactor JOY0. The MK-III project has three major purposes such as increase high neutron flux, improvement of plant availability factor and upgrading in irradiation techniques. Thermal output by core transformation for high neutron flux was increased from 100MWt to 140MWt. The main components in the cooling system such as IHX(Intermediate Heat Exchanger) and DHX(Dump Heat Exchanger) were replaced in MK-III modification in order to increase heat removal capability. Heat transfer capacity of IHX was increased from 50MWt/Unit to 70MWt/Unit and that of DHX was increased from 25MWt/Unit to 35MWt/Unit. These components replacement has been safety completed from october 30, 2000 through September 21, 2001. This report summarizes the way, results and safety measures about dismantling of no sodium adhered components and such as DHX blower and sodium cleaning of sodium components such as the DHX, the pipes connected with DHX and secondary side of IHX. Dismantling and sodium cleaning of secondary cooling system components were performed safely and efficiently as almost planned. The total amount of removed sodium was about 13.5kg.

Oral presentation

R&D of lithium target and test facilities for the fusion neutron source

Wakai, Eiichi; Kondo, Hiroo; Kanemura, Takuji; Hirakawa, Yasushi; Furukawa, Tomohiro; Kikuchi, Takayuki; Ito, Yuzuru*; Hoashi, Eiji*; Yoshihashi, Sachiko*; Horiike, Hiroshi*; et al.

no journal, , 

no abstracts in English

6 (Records 1-6 displayed on this page)
  • 1