検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 12 件中 1件目~12件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Progress in development and design of the neutral beam injector for JT-60SA

花田 磨砂也; 小島 有志; 田中 豊; 井上 多加志; 渡邊 和弘; 谷口 正樹; 柏木 美恵子; 戸張 博之; 梅田 尚孝; 秋野 昇; et al.

Fusion Engineering and Design, 86(6-8), p.835 - 838, 2011/10

 被引用回数:13 パーセンタイル:69.55(Nuclear Science & Technology)

JT-60SAにおいては、12基の正イオン中性粒子入射装置(NBI)と1基の負イオンNBIを用いて、合計30MWの重水素原子を100秒間プラズマへ入射することが要求されている。正イオンNBIにおいては、1基あたり1.7MW, 85keVの重水素原子の入射に向けて、既存の正イオンNBIの電源の一部や磁気シールドを改造する設計を進めている。電源に関しては設計をほぼ完了し、改造機器の仕様を決定した。磁気シールドに関しては工学設計をほぼ完了し、今後、製作設計を開始する予定である。500keV, 10MW入射が要求されている負イオンNBIにおいては、同装置の心臓部である負イオン源の開発を強力に進めている。負イオン源内の真空絶縁を改善することによって、負イオン源の耐電圧を従来の400kVから設計電圧である500kVに大幅に改善した。加えて、イオン引き出し面積の約20%を用いたビーム生成実験において、2.8A, 500keVの水素負イオンビーム生成に成功した。本結果は1A以上の負イオンビームを500keV以上のエネルギーまで加速した世界初の成果である。開発に加えて、設計・調達においても、500kV加速電源の改造設計を完了し、2010年度から調達を開始する。

論文

Development of the JT-60SA Neutral Beam Injectors

花田 磨砂也; 小島 有志; 井上 多加志; 渡邊 和弘; 谷口 正樹; 柏木 美恵子; 戸張 博之; 梅田 尚孝; 秋野 昇; 椛澤 稔; et al.

AIP Conference Proceedings 1390, p.536 - 544, 2011/09

 被引用回数:7 パーセンタイル:84.66(Physics, Atomic, Molecular & Chemical)

JT-60SAにおいては、12基の正イオン中性粒子入射(NBI)装置と1基の負イオンNBI装置を用いて、合計30-34MWの重水素中性粒子ビームを100秒間プラズマへ入射することが要求されている。正イオンNBIに関しては、JT-60SAの設計値である1基あたり2MW, 85keVの重水素中性粒子ビームの入射を達成している。その際、イオン源やイオンダンプ等のビームライン機器は、100秒入射が要求されるJT-60SAで既存の装置を改造することなく再使用できる見通しを得ている。また、10MW, 500keV入射が要求されているJT-60SAの負イオンNBI装置のための開発においては、500keV, 2.8Aの水素負イオンビーム生成に成功している。これは、1A以上の負イオンビームを500keV以上のエネルギーまで加速した世界初の成果である。今後、実験装置を整備し、負イオンの100秒間生成のための開発研究を実施する予定である。

論文

Achievement of 500 keV negative ion beam acceleration on JT-60U negative-ion-based neutral beam injector

小島 有志; 花田 磨砂也; 田中 豊*; 河合 視己人*; 秋野 昇; 椛澤 稔; 小又 将夫; 藻垣 和彦; 薄井 勝富; 佐々木 駿一; et al.

Nuclear Fusion, 51(8), p.083049_1 - 083049_8, 2011/08

 被引用回数:51 パーセンタイル:88.28(Physics, Fluids & Plasmas)

JT-60NNBIの負イオン源は今まで耐電圧性能が低く、入射パワーが制限されていることが大きな問題であった。そこで、負イオン源内の真空絶縁距離を調整し、単段の要求性能を超える各段200kVを保持することに成功した。この結果を踏まえて負イオン源を改良し、従来よりも短いコンディショニング時間で500kVの印加に成功し、設計値である490kVを加速電源の限界である40秒間絶縁破壊することなく保持することにも成功した。そして、1/5のビーム引き出し領域からビーム加速試験を実施し、従来410keVが最高であったビームエネルギーを最高507keVまで上昇させることに成功した。また、486keVのビームでの負イオン電流値は18m離れたカロリーメーターで2.8A(84A/m$$^{2}$$)が得られた。通常、過度のギャップ長延長はビーム光学の劣化を引き起こすが、今回のギャップ長ではビーム光学の大きな劣化がないことを計算及び実験で確認した。これらの結果はJT-60SAやITERのNBIにおける耐電圧設計に大きく貢献するものである。

論文

Demonstration of 500 keV beam acceleration on JT-60 negative-ion-based neutral beam injector

小島 有志; 花田 磨砂也; 田中 豊*; 河合 視己人*; 秋野 昇; 椛澤 稔; 小又 将夫; 藻垣 和彦; 薄井 勝富; 佐々木 駿一; et al.

Proceedings of 23rd IAEA Fusion Energy Conference (FEC 2010) (CD-ROM), 8 Pages, 2011/03

JT-60N-NBIの負イオン源は今まで耐電圧性能が低く、入射パワーが制限されているのが問題であった。そこで、加速電極の間隔を拡げて、負イオン源内の最短の真空絶縁距離である支持枠角部の電界集中を低減した結果、単段の要求性能を超える200kVを保持することに成功し、設計指標となっていた大型の負イオン源では小型電極よりも6から7倍程度長い真空絶縁距離が必要であることが明らかになった。その理由として電極の面積が100倍異なることだけでなく、1080個もある電極孔や支持枠等の局所電界の電界分布が影響していることが小型電極の実験結果から予測される。そして、1/5のビーム引き出し領域からビーム加速試験を実施した結果、従来420keVが最高であったビームエネルギーを最高507keVまで上昇させることに成功した。ギャップ長を増加させたことによりビーム光学が劣化して電極熱負荷が増大することが懸念されたが、今回のギャップ長の範囲ではビーム光学の劣化がないことを確認した。これらの結果はJT-60SAやITERのNBIにおける耐電圧設計に大きく貢献するものである。

論文

Development and design of the negative-ion-based NBI for JT-60 Super Advanced

花田 磨砂也; 秋野 昇; 遠藤 安栄; 井上 多加志; 河合 視己人; 椛澤 稔; 菊池 勝美; 小又 将夫; 小島 有志; 藻垣 和彦; et al.

Journal of Plasma and Fusion Research SERIES, Vol.9, p.208 - 213, 2010/08

原子力機構では、JT-60SAに向けた負イオンNBI装置の開発及び設計を進めている。特に、開発に関しては、500keV, 22Aの重水素負イオンビームの生成に向けて、既存のJT-60負イオン源を改良し、JT-60負イオンNBI装置に取り付けて、試験を行っている。現在、開発の最優先課題である負イオン源の高エネルギー化を精力的に進めている。負イオン源内の電極間のギャップ長を従来よりも伸張することによって、イオン源に印加可能な加速電圧を従来の400kVから要求性能である500kVまで改善した。加えて、イオン引き出し領域の1/5を用いて、世界に先駆けて、500keV, 3Aの高エネルギー水素負イオンビームの生成に成功した。負イオン源の高エネルギー化と並行して、JT-60SAにおける100秒入射に向けて、既設のJT-60負イオンNBI装置の長パルス化を図った。負イオン源内の電極熱負荷を従来より20%低減し、同装置の限界である30秒入射を実現した。その結果、入射時間とパワーの積である入射エネルギーは世界最大値80MJに到達し、プラズマの高性能化に大きく貢献した。

論文

Recent R&D activities of negative-ion-based ion source for JT-60SA

池田 佳隆; 花田 磨砂也; 鎌田 正輝; 小林 薫; 梅田 尚孝; 秋野 昇; 海老沢 昇; 井上 多加志; 本田 敦; 河合 視己人; et al.

IEEE Transactions on Plasma Science, 36(4), p.1519 - 1529, 2008/08

 被引用回数:12 パーセンタイル:43.9(Physics, Fluids & Plasmas)

JT-60SA用負イオンNBI加熱装置(N-NBI)は、加速エネルギー500keV, 10MW, 100秒入射の性能が求められている。JT-60SA用N-NBIの実現には、3つの課題解決が必要である。1つはイオン源の耐電圧の改善である。最近のイオン源の耐電圧試験から、大型加速管ではその電極面積の大型化に伴い長時間のコンディショニングと電界強度の設計裕度が必要であることが明らかとなった。2つ目は、電極及びビームラインの熱負荷の低減である。最近の研究によりビーム同士の空間電荷効果でビーム軌道が曲げられ電極に衝突し、熱負荷を増加していることが明らかとなった。これは空間電荷効果を考慮した3次元ビーム軌道計算に基づき電極構造を補正することで改善できる。3つ目は、100秒間の安定な負イオン生成である。このため負イオン生成に不可欠なプラズマ電極の温度制御方式を提案した。これらのR&Dを行い、JT-60SA用N-NBIのイオン源は2015年から改造を予定している。

論文

Applicability examination and evaluation of reactor dismantlement technology in the Fugen; Examination of double tubes cutting by abrasive water jet

中村 保之; 菊池 孝一; 森下 喜嗣; 臼井 龍男*; 大鐘 大介*

Proceedings of 14th International Conference on Nuclear Engineering (ICONE-14) (CD-ROM), 9 Pages, 2006/07

「ふげん」原子炉本体解体における固有の課題である、2重管構造である圧力管とカランドリア管の解体工法を明確にする必要がある。これら2重管部材は、高放射化したジルコニウム材であるため、公衆への環境影響を考慮すると、機械式切断工法が望ましい。また、工期短縮を図るため、2重管を同時に切断することを考えると、比較的スタンドオフを長くとれる工法が望ましい。以上のことから、切断工法として、アブレイシブウォータジェット工法を選定し、2重管解体への適用性の確認試験を行った。この結果、アブレイシブウォータージェット工法は、炉心部2重管の内側及び外側から同時に切断可能であることや、最厚肉の構造物にも適用可能であることを確認するとともに、研掃材供給量と切断速度の関係や二次廃棄物発生量や性状を明らかにした。

論文

Capability of energy selective neutron irradiation test facility(ESNIT) for fusion reactor materials testing and the status of ESNIT program

野田 健治; 杉本 昌義; 加藤 義夫; 松尾 秀人; 渡辺 勝利; 菊池 輝男; 薄井 洸; 大山 幸夫; 大野 英雄; 近藤 達男

Journal of Nuclear Materials, 191-194, p.1367 - 1371, 1992/00

 被引用回数:9 パーセンタイル:65.12(Materials Science, Multidisciplinary)

重陽子加速器をベースとするエネルギー選択型中性子照射実験装置(ESNIT)は高中性子エネルギー・高中性子束の照射場での材料試験が可能な施設であり、しかもこの中性子源がつくる照射場における中性子エネルギースペクトルが約5~15MeVの間でピーク性とピークエネルギーの選択性とを有している。このエネルギー領域の中性子による材料重照射試験が核融合炉材料開発にとって必須の手段として期待され、現在の要素技術検討が進められている。本稿ではESNITを用いる核融合炉材料研究とその特徴、ESNITの技術的検討の現状についてのべる。

口頭

「ふげん」原子炉本体解体技術の適用性検討評価; アブレイシブウォータジェットによる2重管模擬材切断試験,1

中村 保之; 菊池 孝一; 森下 喜嗣; 大鐘 大介*; 臼井 龍男*

no journal, , 

新型転換炉ふげん発電所(以下「ふげん」と略す)の原子炉本体解体技術を検討する中で、逐次解体を想定した場合に「ふげん」固有の課題である圧力管とカランドリア管の2重管構造(以下、2重管と略す)解体へのアブレイシブウォータージェットの適用性を確認するため、2重管模擬材切断試験を行い、切断データを取得した。

口頭

「ふげん」原子炉本体解体技術の適用性検討評価アブレイシブウォータージェットによる2重管模擬材切断試験,2

中村 保之; 森下 喜嗣; 菊池 孝一; 臼井 龍男*; 大鐘 大介*

no journal, , 

「ふげん」原子炉本体固有の課題である原子炉内部に組み込まれている224本の圧力管・カランドリア管の2重管の解体工法を明らかにしていく必要がある。この2重管は切断実績の少ないジルコニウム合金材であり、また高放射化部材であることから、解体雰囲気等への影響を考慮すると機械式切断が好ましい。また、工期短縮を考慮し、これら2重管を同時に切断することを考えると、スタンドオフを比較的長くとれる切断方法が望ましい。以上のことから建設工事等で実績があり、開発規模が比較的小さいアブレイシブウォータージェット(以下、AWJという)を最適な工法の1つと考え、2重管切断への適用性を評価するため最適な切断速度や研掃材供給量等の条件を明らかにする試験を行った。また、切断によって発生する2次廃棄物の回収方法を検討するために、粒度分布等のデータ取得を行った。切断試験の結果、切断速度と最小研掃材供給量の関係が得られるとともに、研掃材供給量を建設工事等で一般的に用いられている量の約半分程度まで減少させても切断可能であることがわかった。この他、炉心構造材中で最も厚い板厚150mmのSUS材も1パスで切断できる能力があることがわかった。

口頭

JT-60SAに向けたNBI装置の解体・改造計画

花田 磨砂也; 河合 視己人; 秋野 昇; 椛澤 稔; 小又 将夫; 薄井 勝富; 藻垣 和彦; 佐々木 駿一; 菊池 勝美; 大島 克己; et al.

no journal, , 

日本原子力研究開発機構においては、平成22年度から本格的な解体作業に着手する予定である。NBIにおいては、解体撤去品の多くは、放射線管理区域で保管・管理された後、JT-60SAにおいて再使用される。平成21年11月から平成22年1月中旬の期間には、解体の準備作業として、本体室からの物品の搬出ルートを確保することを目的に、搬出ルートの中央部分に設置されている高電位テーブル(HVT、重量150トン)を撤去する。HVTに加えて、負イオン源の保守ステージや高電圧ブッシングも平成21年11月から平成22年1月中旬の期間に撤去する。その後、平成22年中期までに、本体室の中性子遮蔽体や真空容器周りの計測装置を撤去し、その後真空容器の周りに設置されている正イオンNBI装置の解体を始める。10基の垂直正イオンNBIタンクすべてを撤去し、そのうち、JT-60SAで再使用される8基は再使用のための養生を行った後、放射線管理区域内で保管・管理する。また、4基の接線正イオンNBIタンクは本体室内で保管・管理される。NBI装置を含む真空容器周辺機器を撤去した後に、真空容器本体を撤去する予定である。本発表では、日本で最初に実施する大型核融合装置の解体のうちでも、最も高い技術力が必要となるNBI装置の解体について報告する。

口頭

JT-60U中性粒子入射装置の解体・改造手順

藻垣 和彦; 花田 磨砂也; 河合 視己人; 椛澤 稔; 秋野 昇; 小又 将夫; 薄井 勝富; 大麻 和美; 菊池 勝美; 清水 達夫; et al.

no journal, , 

JT-60Uの次期装置である超電導コイル核融合装置(JT-60SA)において、既存のNBI加熱装置は再使用される。このため、同装置は解体撤去された後、長期保管される。同装置を含むJT-60U装置は平成22年度より本格的に解体撤去されるが、本体室からの物品の搬出ルートの確保を目的に、平成21年11月$$sim$$平成22年1月中にかけて、搬出ルートの中央にある負イオンNBI用高電位テーブル(HVT)を撤去する。撤去対象となるHVTは負イオン源へ電力を供給する電源盤を収納するものであり、4階構造の超大型構造体である。HVTは2-4階の電源収納筐体とその筐体を大地から絶縁し支持する絶縁柱で構成されている。HVTの大きさは長さ13.1m,幅5.6m,高さ10mであり、電源を含めた総重量は約150トンである。コスト削減や工期短縮のために、ソース電源収納用筐体と絶縁柱を含む支持筐体に2分割し、撤去する。HVT内部の電源を含めた収納用筐体の重量は130トンであり、一括撤去のために筐体の構造材であるH鋼を補強するとともに、吊り金具を8か所溶接した。その後、吊り位置を自由に変えることが可能な天秤を用いて仮吊りすることによって、収納用筐体と支持筐体を分割した。分割作業期間中はHVTの転倒防止のため、分割した箇所を専用の仮受け架台で支持しながら作業を進めた。すべての連結ボルトを取り外した後、仮受け架台を外し、除染後に別の建屋に運び出し、残った1階の支持筐体を撤去する。本稿では、超大型構造体であるHVTの放射線管理区域からの搬出について報告する。

12 件中 1件目~12件目を表示
  • 1