Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 228

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Achievements and status of the STRAD project for radioactive liquid waste management

Arai, Yoichi; Watanabe, So; Nakahara, Masaumi; Funakoshi, Tomomasa; Hoshino, Takanori; Takahatake, Yoko; Sakamoto, Atsushi; Aihara, Haruka; Hasegawa, Kenta; Yoshida, Toshiki; et al.

Progress in Nuclear Science and Technology (Internet), 7, p.168 - 174, 2025/05

The Japan Atomic Energy Agency (JAEA) has been conducting a project named "Systematic Treatment of RAdioactive liquid waste for Decommissioning (STRAD)" project since 2018 for fundamental and practical studies for treating radioactive liquid wastes with complicated compositions. Fundamental studies have been conducted using genuine liquid wastes accumulated in a hot laboratory of the JAEA called the Chemical Processing Facility (CPF), and treatment procedures for all liquid wastes in CPF were successfully designed on the results obtained. As the next phase of the project, new fundamental and practical studies on primarily organic liquid wastes accumulated in different facilities of JAEA are in progress. This paper reviews the representative achievements of the STRAD project and introduces an overview of ongoing studies.

Journal Articles

Combustion properties of glove-box panel resins under fire accidents

Tashiro, Shinsuke; Uchiyama, Gunzo; Ono, Takuya; Amano, Yuki; Yoshida, Ryoichiro; Watanabe, Koji*; Abe, Hitoshi; Yamane, Yuichi

Nuclear Technology, 211(3), p.429 - 438, 2025/03

 Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)

Contributing to the confinement safety evaluation of glove-box (GB) connected with high efficiency particle air (HEPA) filters for radioactive materials under fire accidents, combustion tests of a flammable polymer, Polymethyl methacrylate (PMMA), and a flame retardant polymer, Polycarbonate (PC), as typical GB panel resins have been conducted with an engineering-scale combustion apparatus. The combustion properties such as the mass loss rate (MLR) and the heat release rate (HRR) of PMMA and PC were investigated in the combustion tests. In the tests with the same shapes, it was found the followings; MLRs and HRRs of PMMA were larger than those of PC under the same supply flow rate into the combustion cell (Fv); MLRs and HRRs of PMMA and PC were constant under different Fv. Moreover, in the tests of PMMA with different cross section areas (S), MLRs and HRRs were found to be proportional to S. Using these results, the relationships of MLR and HRR to S of PMMA and PC were deduced.

Journal Articles

Study on the effect of radiation-resistant resin on water radiolysis

Ito, Tatsuya; Nagaishi, Ryuji; Kuwano, Ryo*; Godo, Masao*; Yoshida, Yoichi*

Radiation Physics and Chemistry, 226, p.112198_1 - 112198_5, 2025/01

 Times Cited Count:0 Percentile:0.00(Chemistry, Physical)

In recent years, the use of radiation-resistant resins of polyimide and polyether ether ketone becomes increasing as vessels for irradiation and unsealed radioisotope experiments. However, in our radiolysis experiments, the possibility of interaction between radiolysis products of water and the resin was found, suggesting concerns that the resin may affect reactions in water in radiation fields. To clarify the interaction, dichromate (Cr$$_{2}$$O$$_{7}$$$$^{2-}$$) reduction and hydrogen peroxide (H$$_{2}$$O$$_{2}$$) formation in $$gamma$$-radiolysis of water were compared with and without the resin. The Cr$$_{2}$$O$$_{7}$$$$^{2-}$$ reduction amount in aqueous solution with the resin became larger than that without the resin at the same dose, indicating the promotion of Cr$$_{2}$$O$$_{7}$$$$^{2-}$$ reduction by the resin. On the other hand, the H$$_{2}$$O$$_{2}$$ formation in pure water with and without an electron scavenger were almost independent of the presence of resin. These suggested the interaction between hydroxyl radical and the resin in contact with water in radiation fields.

Journal Articles

Neutronics/thermal-hydraulics coupling simulation using JAMPAN in a single BWR fuel assembly

Kamiya, Tomohiro; Nagatake, Taku; Ono, Ayako; Tada, Kenichi; Kondo, Ryoichi; Nagaya, Yasunobu; Yoshida, Hiroyuki

Proceedings of 31st International Conference on Nuclear Engineering (ICONE31) (Internet), 7 Pages, 2024/11

We have developed the JAEA Advances Multi-Physics Analysis platform for Nuclear systems (JAMPAN) to realize high-fidelity neutronics/thermal-hydraulics coupling simulations. We will perform MVP/JUPITER coupling simulation for a single BWR fuel assembly in order to confirm that the neutronics/thermal-hydraulics coupling through JAMPAN is feasible. This presentation explains how to send and receive data between MVP and JUPITER through JAMPAN and simulation results.

Journal Articles

Release behavior of gaseous ruthenium tetroxide during heating of high-level liquid waste simulant during simulated accident conditions

Yoshida, Naoki; Ono, Takuya; Amano, Yuki; Yoshida, Ryoichiro; Abe, Hitoshi; Yamane, Yuichi

Nuclear Technology, 210(10), p.1999 - 2007, 2024/10

 Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)

A malfunction of the cooling system of high-level liquid waste (HLLW) and failure of countermeasures may lead to the "evaporation to dryness due to the loss of cooling functions" (EDLCF) of HLLW. In the EDLCF, ruthenium (Ru) can be released at a greater fraction to initial amount than other elements in HLLW by forming gaseous Ru. It is important to identify the chemical form of the released gaseous Ru to achieve a comprehensive understanding of the events impacting the source term assessment of Ru in this accident, such as particle formation, gas absorption and deposition on migration pathways. In this study, we observed the ultraviolet/visible spectroscopy of the off-gas generated during the heating of an HLLW simulant. Employing a program that allows the separation and quantification of known components within the spectrum (ruthenium tetroxide (RuO$$_{4}$$), nitrogen dioxide, and nitric acid), we attempted to analyze the composition of gaseous Ru within the generated off-gas. Our findings reveal RuO$$_{4}$$ as the main component of the gaseous Ru in off-gas after comparing the total amount of released Ru and the RuO$$_{4}$$ released amount obtained via spectroscopic analysis.

Journal Articles

Development of high-fidelity multi-physics platform JAMPAN

Tada, Kenichi; Kondo, Ryoichi; Kamiya, Tomohiro; Nagatake, Taku; Ono, Ayako; Nagaya, Yasunobu; Yoshida, Hiroyuki

Proceedings of International Conference on Physics of Reactors (PHYSOR 2024) (Internet), p.1488 - 1497, 2024/04

JAEA has developed a new high-fidelity multi-physics platform JAMPAN for connecting single-physics codes such as a neutronics code and a thermal-hydraulics code. It consists of the HDF5 formatted data container and input and output data handler modules to generate the input file and read the output file of the single-physics code. Users can easily add or exchange the code by implementing input and output data handler modules for this code. The first target of JAMPAN is the coupling of neutronics and thermal-hydraulics calculations to provide reference results of core analysis codes. The current version of JAMPAN couples the neutronics code MVP and the thermal-hydraulics codes JUPITER, ACE-3D, and NASCA. Users can select the thermal-hydraulics code depending on the scale of problems to be solved, computational performance, and so on. This presentation explains the overview of JAMPAN and shows the results of the neutronics and thermal-hydraulics coupling calculation.

JAEA Reports

Utilization of gamma ray irradiation at the WASTEF Facility

Sano, Naruto; Yamashita, Naoki; Watanabe, Masaya; Tsukada, Manabu*; Hoshino, Kazutoyo*; Hirai, Koki; Ikegami, Yuta*; Tashiro, Shinsuke; Yoshida, Ryoichiro; Hatakeyama, Yuichi; et al.

JAEA-Technology 2023-029, 36 Pages, 2024/03

JAEA-Technology-2023-029.pdf:2.47MB

At the Waste Safety Testing Facility (WASTEF), the gamma ray irradiation device "Gamma Cell 220" was relocated from the 4th Research Building of the Nuclear Science Research Institute in FY2019, and the use of gamma ray irradiation has begun. Initially, Fuel Cycle Safety Research Group, Fuel Cycle Safety Research Division, Nuclear Safety Research Center, Sector of Nuclear Safety Research and Emergency Preparedness, the owner of this device, conducted the tests as the main user, but since 2022, other users, including those outside the organization, have started using it. The gamma ray irradiation device "Gamma Cell 220" is manufactured by Nordion International Inc. in Canada. Since it was purchased in 1989, the built-in $$^{60}$$Co radiation source has been updated once, and safety research related to nuclear fuel cycles, etc. It is still used for this purpose to this day. This report summarizes the equipment overview of the gamma ray irradiation device "Gamma Cell 220", its permits and licenses at WASTEF, usage status, maintenance and inspection, and future prospects.

Journal Articles

Japan Atomic Energy Agency; Contribution to the decommissioning of the Fukushima Daiichi Nuclear Power Station and the reconstruction of Fukushima Prefecture at the Naraha center for Remote Control technology development

Morimoto, Kyoichi; Ono, Takahiro; Kakutani, Satomi; Yoshida, Moeka; Suzuki, Soichiro

Journal of Robotics and Mechatronics, 36(1), p.125 - 133, 2024/02

The Naraha Center for Remote Control Technology Development was established for the purpose of developing and verifying remote control equipment for promoting the decommissioning of the Fukushima Daiichi Nuclear Power Station and the external use of this center was started in 2016. The mission of this center is to contribute to the decommissioning of the Fukushima Daiichi Nuclear Power Station and for the reconstruction of Fukushima Prefecture. In this review, we describe the equipment related to the full-scale mock-up test, the component test for a remote-control device and the virtual reality system in this center. In addition, the case examples for usage of these equipment are introduced.

JAEA Reports

Annual report for FY2021 on the activities of Naraha Center for Remote Control Technology Development (April 1, 2021 - March 31, 2022)

Akiyama, Yoichi; Shibanuma, So; Yanagisawa, Kenichi*; Yamada, Taichi; Suzuki, Kenta; Yoshida, Moeka; Ono, Takahiro; Kawabata, Kuniaki; Watanabe, Kaho; Morimoto, Kyoichi; et al.

JAEA-Review 2023-015, 60 Pages, 2023/09

JAEA-Review-2023-015.pdf:4.78MB

Naraha Center for Remote Control Technology Development (NARREC) was established in Japan Atomic Energy Agency to promote a decommissioning work of Fukushima Daiichi Nuclear Power Station (Fukushima Daiichi NPS). NARREC consists of a Full-scale Mock-up Test Building and Research Management Building. Various test facilities are installed in these buildings for the decommissioning work of Fukushima Daiichi NPS. These test facilities are intended to be used for various users, such as companies engaged in the decommissioning work, research and development institutions, educational institutions and so on. The number of NARREC facility uses was 84 in FY2021. We participated booth exhibitions and presentations on the decommissioning related events. Moreover, we also contributed to the development of human resources by supporting the 6th Creative Robot Contest for Decommissioning. As a new project, "Narahakko Children's Classroom" was implemented for elementary school students in Naraha Town. This report summarizes the activities of NARREC in FY2021, such as the utilization of facilities and equipment of NARREC, the development of remote-control technologies for supporting the decommissioning work, arrangement of the remote-control machines for emergency response, and training for operators by using the machines.

Journal Articles

Clogging properties of HEPA filter induced by loading of soot from burned glove-box panel materials

Tashiro, Shinsuke; Ono, Takuya; Amano, Yuki; Yoshida, Ryoichiro; Watanabe, Koji*; Abe, Hitoshi

Nuclear Technology, 208(10), p.1553 - 1561, 2022/10

 Times Cited Count:1 Percentile:14.76(Nuclear Science & Technology)

To contribute to the confinement safety evaluation of the radioactive materials in the Glove box (GB) fire accident, combustion tests with the Polymethyl methacrylate (PMMA) and the Polycarbonate (PC) as typical panel materials for the GB have been conducted with a relatively large scale apparatus. As the important data for evaluating confinement safety, the release ratio and the particle size distribution of the soot generated from the burned materials were obtained. Furthermore, the rise of the differential pressure ($$Delta$$P) of the high efficiency particle air (HEPA) filter by the soot loading was also investigated. As results, the release ratio of the soot from the PC was about seven times as large as the PMMA. In addition, it was found that the behavior of the rise of the $$Delta$$P with soot loading could be represented uniformly regardless of kinds of combustion materials by considering effect of the loading volume of the soot particle in the relatively low loading region.

Journal Articles

Differential pressure changes of a high airflow-type HEPA filter during solvent fire in reprocessing facilities

Tashiro, Shinsuke; Uchiyama, Gunzo; Ono, Takuya; Amano, Yuki; Yoshida, Ryoichiro; Abe, Hitoshi

Nuclear Technology, 208(7), p.1205 - 1213, 2022/07

 Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)

A clogging behavior of a high-efficiency particulate air (HEPA) filter at solvent fire accidents for reprocessing facilities has been studied. In this study, the burning rates of 30% tri-butyl phosphate (TBP)/dodecane (DD) mixed solvent and DD solvent and the differential pressure ($$Delta$$P) of a high airflow typed HEPA filter applied in the actual facilities in Japan were measured. It was confirmed that the mainly burned was DD at the early stage of the mixed solvent burning and the TBP at the late stage. Furthermore, it was found that the $$Delta$$P rapidly rose at the late stage of the mixed solvent burning. The increase of the release ratio of the unburned particulate composition (TBP, its degraded solvent and inorganic phosphorus (P$$_{2}$$O$$_{5}$$)) was considered to contribute to the rapid rise. The correlating formulas with the $$Delta$$P and the mass of the loading particulates, except for the region of the rapid rise of $$Delta$$P, could be induced.

JAEA Reports

Effect of nitrous acid on migration behavior of gaseous ruthenium tetroxide into liquid phase

Yoshida, Naoki; Ono, Takuya; Yoshida, Ryoichiro; Amano, Yuki; Abe, Hitoshi

JAEA-Research 2021-011, 12 Pages, 2022/01

JAEA-Research-2021-011.pdf:1.49MB

In boiling and drying accidents involving high-level liquid waste in fuel reprocessing plants, emphasis is placed on the behavior of ruthenium (Ru). Ru would form volatile species, such as ruthenium tetroxide (RuO$$_{4}$$), and could be released to the environment with coexisting gases, including nitric acid, water, or nitrogen oxides. In this study, to contribute toward safety evaluations of these types of accidents, the migration behavior of gaseous Ru into the liquid phase has been experimentally measured by simulating the condensate during an accident. The gas absorption of RuO$$_{4}$$ was enhanced by increasing the nitrous acid (HNO$$_{2}$$) concentration in the liquid phase, indicating the occurrence of chemical absorption. In control experiments without HNO$$_{2}$$, the lower the temperature, the greater was the Ru recovery ratio in the liquid phase. Conversely, in experiments with HNO$$_{2}$$, the higher the temperature, the higher the recovery ratio, suggesting that the reaction involved in chemical absorption was activated at higher temperatures.

Journal Articles

PSTEP: Project for solar-terrestrial environment prediction

Kusano, Kanya*; Ichimoto, Kiyoshi*; Ishii, Mamoru*; Miyoshi, Yoshizumi*; Yoden, Shigeo*; Akiyoshi, Hideharu*; Asai, Ayumi*; Ebihara, Yusuke*; Fujiwara, Hitoshi*; Goto, Tadanori*; et al.

Earth, Planets and Space (Internet), 73(1), p.159_1 - 159_29, 2021/12

 Times Cited Count:7 Percentile:39.36(Geosciences, Multidisciplinary)

The PSTEP is a nationwide research collaboration in Japan and was conducted from April 2015 to March 2020, supported by a Grant-in-Aid for Scientific Research on Innovative Areas from the Ministry of Education, Culture, Sports, Science and Technology of Japan. It has made a significant progress in space weather research and operational forecasts, publishing over 500 refereed journal papers and organizing four international symposiums, various workshops and seminars, and summer school for graduate students at Rikubetsu in 2017. This paper is a summary report of the PSTEP and describes the major research achievements it produced.

Journal Articles

Restraint effect of coexisting nitrite ion in simulated high level liquid waste on releasing volatile ruthenium under boiling condition

Yoshida, Ryoichiro; Amano, Yuki; Yoshida, Naoki; Abe, Hitoshi

Journal of Nuclear Science and Technology, 58(2), p.145 - 150, 2021/02

 Times Cited Count:2 Percentile:17.88(Nuclear Science & Technology)

In the "evaporation and dryness due to the loss of cooling functions" which is one of the severe accidents at reprocessing plants in Japan, ruthenium (Ru) is possible to be released much more than other elements to the environment. This cause is considered that the volatile Ru compound can be released from high level liquid waste (HLLW) as gaseous compound in adding to the release by entrainment. It was expected that the release of the volatile Ru compound from the HLLW may be able to be restrained by coexisting nitrite ion because of its reduction power. To confirm the effect of nitrite ion on the release behavior of the volatile Ru compound, four experiments of heating the simulated HLLW (SHLLW) with setting the concentration of nitrite ion in the SHLLW as a parameter ware carried out. As a result, the release of the volatile Ru compound was seemed to be restrained by adding nitrite sodium as a source of nitrite ion under certain boiling condition. This result may contribute to improve source term analysis in the evaporation and dryness due to the loss of cooling functions.

Journal Articles

Identification of hydrogen species on Pt/Al$$_{2}$$O$$_{3}$$ by ${it in situ}$ inelastic neutron scattering and their reactivity with ethylene

Yamazoe, Seiji*; Yamamoto, Akira*; Hosokawa, Saburo*; Fukuda, Ryoichi*; Hara, Kenji*; Nakamura, Mitsutaka; Kamazawa, Kazuya*; Tsukuda, Tatsuya*; Yoshida, Hisao*; Tanaka, Tsunehiro*

Catalysis Science & Technology, 11(1), p.116 - 123, 2021/01

 Times Cited Count:6 Percentile:22.56(Chemistry, Physical)

Journal Articles

Consistent modelling of material weight loss and gas release due to pyrolysis and conducting benchmark tests of the model; A Case for glovebox panel materials such as polymethyl methacrylate

Ono, Takuya; Tashiro, Shinsuke; Amano, Yuki; Yoshida, Naoki; Yoshida, Ryoichiro; Abe, Hitoshi

PLOS ONE (Internet), 16(1), p.e0245303_1 - e0245303_16, 2021/01

 Times Cited Count:3 Percentile:11.14(Multidisciplinary Sciences)

It is necessary to consider how a glove box's confinement function will be lost when evaluating the amount of radioactive material leaking from a nuclear facility during a fire. In this study, we build a model that consistently explains the weight loss of glove box materials because of heat input from a flame and accompanying generation of the pyrolysis gas. The weight loss suggests thinning of the glove box housing, and the generation of pyrolysis gas suggests the possibility of fire spreading. The target was polymethyl methacrylate (PMMA), used as the glove box panel. Thermal gravimetric tests on PMMA determined the parameters to be substituted in the Arrhenius equation for predicting the weight loss in pyrolysis. The pyrolysis process of PMMA was divided into 3 stages with activation energies of 62 kJ/mol, 250 kJ/mol, and 265 kJ/mol. Furthermore, quantifying the gas composition revealed that the composition of the pyrolysis gas released from PMMA can be approximated as 100 percent methyl methacrylate. This result suggests that the released amount of methyl methacrylate can be estimated by the Arrhenius equation. To investigate the validity of such estimation, a sealed vessel test was performed. In this test, we observed increase of the number of gas molecules during the pyrolysis as internal pressure change of the vessel. The number of gas molecules was similar to that estimated from the Arrhenius equation, and indicated the validity of our method. Moreover, we also performed the same tests on bisphenol-A-polycarbonate (PC) for comparison. In case of PC, the number of gas molecules obtained in the vessel test was higher than the estimated value.

JAEA Reports

Effect of nitrogen oxides on decomposition behavior of gaseous ruthenium tetroxide

Yoshida, Naoki; Amano, Yuki; Ono, Takuya; Yoshida, Ryoichiro; Abe, Hitoshi

JAEA-Research 2020-014, 33 Pages, 2020/12

JAEA-Research-2020-014.pdf:3.66MB

Considering the boiling and drying accident of high-level liquid waste in fuel reprocessing plant, Ruthenium (Ru) is an important element. It is because Ru would form volatile compounds such as ruthenium tetroxide (RuO$$_{4}$$) and could be released into the environment with other coexisting gasses such as nitric oxides (NOx) such as nitric oxide (NO) and nitrogen dioxide (NO$$_{2}$$). To contribute to the safety evaluation of this accident, we experimentally evaluated the effect of NOx on the decomposition and chemical change behavior of the gaseous RuO$$_{4}$$ (RuO$$_{4}$$(g)). As a result, the RuO$$_{4}$$(g) decomposed over time under the atmospheric gasses with NO or NO$$_{2}$$, however, the decomposition rate was slower than the results of experiments without NOx. These results showed that the NOx stabilized RuO$$_{4}$$(g).

Journal Articles

Decomposition behavior of gaseous ruthenium tetroxide under atmospheric conditions assuming evaporation to dryness accident of high-level liquid waste

Yoshida, Naoki; Ono, Takuya; Yoshida, Ryoichiro; Amano, Yuki; Abe, Hitoshi

Journal of Nuclear Science and Technology, 57(11), p.1256 - 1264, 2020/11

 Times Cited Count:11 Percentile:65.08(Nuclear Science & Technology)

Emphasis has been placed on the behavior of ruthenium (Ru) in the evaporation to dryness accident due to the loss of cooling functions (EDLCF) of high-level liquid waste in fuel reprocessing plants. It is because Ru would form volatile compounds such as ruthenium tetroxide (RuO$$_{4}$$) and could be released into the environment with other coexisting gasses such as nitric acid (HNO$$_{3}$$), water (H$$_{2}$$O). To contribute to the safety evaluation of this accident, we experimentally evaluated the decomposition and chemical change behavior of the gaseous RuO$$_{4}$$ (RuO$$_{4}$$(g)) under the various atmospheric conditions: temperature and composition of coexisting gasses. As a result, the behavior of the RuO$$_{4}$$(g) was diverse depending on the atmospheric conditions. In the experiments with the dry air or H$$_{2}$$O vapor, decomposition of RuO$$_{4}$$(g) was observed. In the experiment with the mixed gas which containing HNO$$_{3}$$, almost no decomposition of the RuO$$_{4}$$(g) was observed, and chemical form of the RuO$$_{4}$$(g) was retained.

Journal Articles

Horizontal line nodes in Sr$$_2$$RuO$$_4$$ proved by spin resonance

Iida, Kazuki*; Kofu, Maiko; Suzuki, Katsuhiro*; Murai, Naoki; Kawamura, Seiko; Kajimoto, Ryoichi; Inamura, Yasuhiro; Ishikado, Motoyuki*; Hasegawa, Shunsuke*; Masuda, Takatsugu*; et al.

Journal of the Physical Society of Japan, 89(5), p.053702_1 - 053702_5, 2020/05

 Times Cited Count:23 Percentile:78.99(Physics, Multidisciplinary)

Journal Articles

$$omega N$$ scattering length from $$omega$$ photoproduction on the proton near the reaction threshold

Ishikawa, Takatsugu*; Fujimura, Hisako*; Fukasawa, Hiroshi*; Hashimoto, Ryo*; He, Q.*; Honda, Yuki*; Hosaka, Atsushi; Iwata, Takahiro*; Kaida, Shun*; Kasagi, Jirota*; et al.

Physical Review C, 101(5), p.052201_1 - 052201_6, 2020/05

 Times Cited Count:4 Percentile:37.19(Physics, Nuclear)

228 (Records 1-20 displayed on this page)