Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
出井 俊太郎; 柴田 真仁*; 根岸 久美*; 杉浦 佑樹; 天野 由記; Bateman, K.*; Wilson, J.*; 横山 立憲; 鏡味 沙耶; 武田 匡樹; et al.
Results in Earth Sciences (Internet), 3, p.100097_1 - 100097_16, 2025/12
高レベル放射性廃棄物の地層処分において、セメントと泥岩の相互作用による化学的擾乱領域が形成され、岩盤中の核種移行特性に影響を及ぼす可能性がある。本研究では、11年前に幌延深地層研究センターの140m調査坑道に施工されたセメント(普通ポルトランドセメント(OPC)および低アルカリ性セメント(LAC))と泥岩の界面における変質状態について調査した。複数の分析手法を組み合わせることで、セメントの溶解、方解石やC-(A-)S-H相などの二次鉱物の析出、モンモリロナイトの陽イオン交換、泥岩の空隙率の低下など、セメントと岩石の界面における主要な反応が特定された。また、空隙率の低下による拡散の低下や、変質した泥岩中の二次鉱物への取り込みによる収着の促進など、セメントと泥岩の相互作用が放射性核種の移行に及ぼす影響についても明らかになった。
Cao, T.*; Wei, D.*; Gong, W.; 川崎 卓郎; Harjo, S.; 他10名*
Materials Science and Engineering A, 940, p.148534_1 - 148534_16, 2025/09
The thermal stability of microstructure and mechanical performance is crucial for the industrial application of laser powder bed fusion (LPBF) superalloy components in gas turbines and jet engines. This work investigated the microstructural evolution and strengthening mechanism of LPBF Mar-M509 cobalt-based superalloy before and after thermal exposure at 1200 C using multi-scale microstructural characterization and in situ neutron diffraction tensile testing. The as-built Mar-M509 superalloy exhibited a heterogeneous microstructural features with coarse columnar and fine equiaxed grains, both containing dendritic and cellular substructures enriched with nanoscale carbides and high-density dislocations. The ultra high strength of the as-built sample was primarily attributed to dislocation-precipitation synergistic strengthening. After thermal exposure at 1200
C for 4 h, the dendritic and cellular substructures disappeared and the dislocation density decreased significantly. This study reveals the microstructural evolution and instability of LPBF Mar-M509 superalloy under high-temperature exposure and the impacts on mechanical properties, which provides critical support for the development of cobalt-based superalloys in high-temperature application fields.
山下 享介*; 古賀 紀光*; Mao, W.*; Gong, W.; 川崎 卓郎; Harjo, S.; 藤井 英俊*; 梅澤 修*
Materials Science and Engineering A, 941, p.148602_1 - 148602_11, 2025/09
Ferrite-austenite duplex stainless steels offer excellent strength and ductility, making them suitable for extreme environments. In this study, neutron diffraction during tensile testing at 293 K and 200 K was used to investigate stress partitioning and phase-specific deformation. Phase stress was calculated using a texture-compensated method. At both temperatures, ferrite showed higher phase stress than austenite, acting as the harder phase. At 200 K, both phases exhibited increased strength and work hardening. Austenite showed significant stacking fault formation alongside dislocation migration, while ferrite retained its dislocation-based deformation mode, becoming more effective. Stress contributions from both phases were comparable. No martensitic transformation occurred. Strengthening and enhanced work hardening in both phases led to high strength at 200 K, with ductility similar to that at 293 K.
Johansen, M. P.*; Gwynn, J. P.*; Carpenter, J. G.*; Charmasson, S.*; 森 愛理; Orr, B.*; Simon-Cornu, M.*; Osvath, I.*; McGinnity, P.*
Journal of Environmental Radioactivity, 287, p.107706_1 - 107706_8, 2025/07
被引用回数:0Radiological ingestion doses from eating seafood are regularly evaluated near coastal nuclear facilities, following accidents/events and frequently in national studies worldwide. However, a recent global review found that published seafood doses varied greatly depending on which radionuclides were selected for evaluation and that there has been a tendency to omit important radionuclides or focus on less significant ones. This indicates a need for clear guidance on which radionuclides to prioritise in such studies. Here, we use worldwide data for 16 key radionuclides contributing to typical background seafood ingestion dose. We account for the loss of radionuclides during cooking and the radioactive decay of the short-lived Po. Results indicate that for the typical world consumer, naturally-occurring radionuclides account for
99% of the total seafood ingestion dose, of which about 84% comes from
Po and 8% from
Pb. About 5% comes from
Ra, a far greater proportion than the more frequently-assessed
Ra (
1%). Other Th- and U-series radionuclides provide far lower contributions (0.07%-0.70%), while
C provides about 0.09%. In comparison, the contribution to total seafood ingestion dose from background anthropogenic radionuclides is
1%, with
Cs contributing most (0.08%) and
Sr,
Tc,
Ag and
Pu adding a further 0.05% together. These percentage contributions to dose can vary somewhat depending on consumption patterns (e.g., differing proportions of fish, bivalves, etc.). However,
Po is the dominant contributor irrespective of country-specific diets or restricted diet scenarios (fish-only, seaweed-only, etc.). Study results provide new guidance to improve the design, interpretation and communication of seafood ingestion dose assessments.
Gu, G. H.*; Jeong, S. G.*; Heo, Y.-U.*; Harjo, S.; Gong, W.; Cho, J.*; Kim, H. S.*; 他4名*
Journal of Materials Science & Technology, 223, p.308 - 324, 2025/07
被引用回数:0 パーセンタイル:0.00(Materials Science, Multidisciplinary)Face-centered cubic (FCC) equi-atomic multi-principal element alloys (MPEAs) exhibit excellent mechanical properties from cryogenic to room temperatures. At room temperature, deformation is dominated by dislocation slip, while at cryogenic temperatures (CTs), reduced stacking fault energy enhances strain hardening with twinning. This study uses in-situ neutron diffraction to analyze the temperature-dependent deformation behavior of Al(CoNiV)
, a dual-phase (FCC/BCC) medium-entropy alloy (MEA). At liquid nitrogen temperature (LNT), deformation twinning in the FCC matrix leads to additional strain hardening through the dynamic Hall-Petch effect, giving the appearance of improved strengthening at LNT. In contrast, BCC precipitates show dislocation slip at both 77 K and 298 K, with temperature-dependent lattice friction stress playing a significant role in strengthening. The study enhances understanding of deformation behaviors and provides insights for future alloy design.
Lin, Z. M.*; Liu, B. X.*; Ming, K. S.*; 徐 平光; Yin, F. X.*; Zheng, S. J.*
Scripta Materialia, 263, p.116692_1 - 116692_7, 2025/07
被引用回数:0 パーセンタイル:0.00(Nanoscience & Nanotechnology)Complementary layer thickness effects on strength and plasticity in Q235 and SUS304 steels provide a novel strategy to realize high strength and high plasticity of heterogeneous Q235/SUS304 multilayered steel. In this work, the tensile deformation behaviors and fracture characteristics of vacuum hot-rolled Q235/SUS304 multilayered steel with various layer thicknesses ranging from 223 m to 5
m were deeply investigated. The tensile strength improved with the reduction of layer thickness, and the uniform elongation were first increasing and then decreasing with the decrease of layer thickness, and the peak value appeared at the layer thickness of 20
m. Interestingly, the fracture elongation forms a high plateau value within the 10
20
m range. Further analysis reveals that the severe strain localization in the brittle SUS304 thin layers is delayed by the ductile Q235 layers, which is mainly attributed to the different texture evolution and dislocation configuration characteristics during tensile deformation.
Mao, W.*; Gong, W.; 川崎 卓郎; Gao, S.*; 伊東 達矢; 山下 享介*; Harjo, S.; Zhao, L.*; Wang, Q.*
Scripta Materialia, 264, p.116726_1 - 116726_6, 2025/07
被引用回数:0An ultrafine-grained 304 austenitic stainless steel exhibited pronounced serrated Luders deformation at 20 K, with stress and temperature oscillations reaching 200 MPa and 20 K. neutron diffraction and digital image correlation revealed discontinuous Luders band propagation and burst martensite formation. During deformation, austenite phase stress remained lower than at upper yielding, indicating elastic behavior. Notably, martensite phase stress stayed lower than austenite until fracture, likely due to stress relaxation from burst martensitic transformation at 20 K. The low martensite stress delayed brittle fracture until austenite plastically yielded during uniform deformation.
Park, M.-H.*; 柴田 曉伸*; Harjo, S.; 辻 伸泰*
Acta Materialia, 292, p.121061_1 - 121061_13, 2025/06
被引用回数:1Dual-phase (DP) steel, composed of soft ferrite and hard martensite, offers excellent strength-ductility balance and low cost. This study found that refining the DP microstructure enhanced both yield strength and strain hardening, improving strength and ductility. Digital image correlation (DIC) revealed strain localization in ferrite, but refinement reduced strain differences between ferrite and martensite, suppressing crack initiation. More ferrite/martensite interfaces promoted plasticity in martensite via enhanced deformation constraint. neutron diffraction showed martensite bore higher phase stress, which increased with refinement. By combining
-DIC and neutron data, individual stress-strain curves for ferrite and martensite were constructed for the first time, explaining the strength-ductility synergy through interphase constraint. These findings offer guidance for designing heterostructured materials to overcome the strength-ductility trade-off.
青山 高士; Choudhary, S.*; Pandaleon, A.*; Burns, J. T.*; Kokaly, M.*; Restis, J.*; Ross, J.*; Kelly, R. G.*
Corrosion, 81(6), p.609 - 621, 2025/06
This study presents a new test method for inducing controlled corrosion damage within simulated fastener holes of aluminum alloys, aimed at pretreating fatigue test specimens. The method involves insulating the outer surface while exposing the fastener hole surface to electrolytes containing 0.66 M NaCl + 0.1 M AlCl with varying concentrations of K
S
O
. The evolution of corrosion damage within the fastener hole was examined as a function of exposure duration, electrolyte composition, and volume, as well as the effect of galvanic coupling with a SS316 cathode. Results indicate that fissure depth increases with an increase in K
S
O
concentration but does not progress further after 24-48 hours of exposure in the chemical, or freely-corroding, exposure test. In contrast, galvanic coupling with a SS316 plate significantly accelerates corrosion, leading to much deeper fissures in a shorter time. The importance of electrolyte replenishment has been explored using electrochemical measurements, revealing the impact of evolving electrolyte chemistry. Beyond its application in fatigue specimen pretreatment, this method provides a simple yet effective approach for studying localized corrosion and evaluating mitigation strategies for fastener holes in aerospace structures.
杉田 裕; 大野 宏和; Beese, S.*; Pan, P.*; Kim, M.*; Lee, C.*; Jove-Colon, C.*; Lopez, C. M.*; Liang, S.-Y.*
Geomechanics for Energy and the Environment, 42, p.100668_1 - 100668_21, 2025/06
国際共同プロジェクトDECOVALEX-2023は、数値解析を使用してベントナイト系人工バリアの熱-水-応力(または熱-水)相互作用を研究するためのタスクDとして、幌延人工バリア性能確認試験を対象とした。このタスクは、モデル化のために、1つの実物大の原位置試験と、補完的な4つの室内試験が選択された。幌延人工バリア性能確認試験は、人工的な地下水注入と組み合わせた温度制御非等温の試験であり、加熱フェーズと冷却フェーズで構成されている。6つの研究チームが、さまざまなコンピューターコード、定式化、構成法則を使用して、熱-水-応力または熱-水(研究チームのアプローチによって異なる)数値解析を実行した。
Birkholzer, J. T.*; Graupner, B. J.*; Harrington, J.*; Jayne, R.*; Kolditz, O.*; Kuhlman, K. L.*; LaForce, T.*; Leone, R. C.*; Mariner, P. E.*; McDermott, C.*; et al.
Geomechanics for Energy and the Environment, 42, p.100685_1 - 100685_17, 2025/06
The DECOVALEX initiative is an international research collaboration (www.decovalex.org), initiated in 1992, for advancing the understanding and modeling of coupled thermo-hydro-mechanical-chemical (THMC) processes in geological systems. DECOVALEX stands for "DEvelopment of COupled Models and VALidation against EXperiments". DECOVALEX emphasizes joint analysis and comparative modeling of the complex perturbations and coupled processes in geologic repositories and how these impact long-term performance predictions. More than fifty research teams associated with 17 international DECOVALEX partner organizations participated in the comparative evaluation of eight modeling tasks covering a wide range of spatial and temporal scales, geological formations, and coupled processes. This Virtual Special Issue on DECOVALEX-2023 provides an in-depth overview of these collaborative research efforts and how these have advanced the state-of-the-art of understanding and modeling coupled THMC processes. While primarily focused on radioactive waste, much of the work included here has wider application to many geoengineering topics.
Cai, Y.*; Yoon, S.*; Sheng, Q.*; Zhao, G.*; Seewald, E. F.*; Ghosh, S.*; Ingham, J.*; Pasupathy, A. N.*; Queiroz, R.*; Lei, H.*; et al.
Physical Review B, 111(21), p.214412_1 - 214412_17, 2025/06
We study the magnetic properties of the metallic kagome system (FeCo
)Sn by a combination of muon spin relaxation (
SR), magnetic susceptibility, and scanning tunneling microscopy (STM) measurements in single crystal specimens with Co concentrations
= 0, 0.11, 0.8. In the undoped antiferromagnetic compound FeSn, we find possible signatures for a previously unidentified phase that sets in at
~K, well beneath the Neel temperature
~K as indicated by a peak in the relaxation rate 1/
observed in zero field (ZF) and longitudinal field (LF)
SR measurements, with a corresponding anomaly in the ac and dc susceptibility, and an increase in the static width 1/
in ZF-
SR measurements. No signatures of spatial symmetry breaking are found in STM down to 7~K. Related to the location and motion of muons in FeSn, we confirmed a previous report that about 40% of the implanted muons reside at a field-cancelling high symmetry site at
~K, while an onset of thermal hopping changes the site occupancy at higher temperatures. In Fe
Co
Sn, where disorder eliminated the field-cancellation effect, all the implanted muons exhibit precession and/or relaxation in the ordered state. In Fe
Co
Sn, we find canonical spin glass behavior with freezing temperature
~K; the ZF and LF-
SR time spectra exhibit results similar to those observed in dilute alloy spin glasses CuMn and AuFe, with a critical behavior of
at
and
as
. The absence of spin dynamics at low temperatures makes a clear contrast to the spin dynamics observed by
SR in many geometrically frustrated spin systems on insulating kagome, pyrochlore, and triangular lattices. The spin glass behavior of CoSn doped with dilute Fe moments is shown to originate primarily from the randomness of doped Fe moments rather than due to geometrical frustration of the underlying lattice.
Hartzell, S.*; Furutani, K. M.*; Parisi, A.*; 佐藤 達彦; 加瀬 優紀*; Deglow, C.*; Friedrich, T.*; Beltran, C. J.*
Radiation (Internet), 5(2), p.21_1 - 21_24, 2025/06
Microdosimetry is essential in particle therapy for understanding the biological effects of treatments by quantifying energy depositions within microscopic volumes. The calculation of the microdosimetric distributions can be carried out with physical models such as the Kiefer-Chatterjee (KC) track structure function and the Sato analytical microdosimetric function (AMF). Comprehensive comparisons across these physical models are lacking. The AMF is calculated for spherical domains, while the KC is traditionally calculated for a cylindrical domain. This study introduces a novel version of the KC function for spherical domains, allowing a direct comparison with AMF. The influence of each function on the calculation of the relative biological effectiveness (RBE) in carbon ion radiotherapy (CIRT) was evaluated.
Auh, Y. H.*; Neal, N. N.*; Arole, K.*; Regis, N. A.*; Nguyen, T.*; 小川 修一*; 津田 泰孝; 吉越 章隆; Radovic, M.*; Green, M. J.*; et al.
ACS Applied Materials & Interfaces, 17(21), p.31392 - 31402, 2025/05
MXenes are a promising class of 2D nanomaterials and are of particular interest for gas barrier application. However, MXene nanosheets naturally bear a negative charge, which prevents assembly with negatively charged polymers, such as polyacrylic acid (PAA), into gas barrier coatings. Here, we present MXene- and PAA-based layer-by-layer (MXene/PAA LbL) multilayers formed by leveraging hydrogen bonding interactions. When assembled in acidic conditions, MXene/PAA LbL films exhibit conformal, pin-hole free, nacre-like structures. The MXene/PAA LbL films yield high blocking capability and low permeability (0.140.01 cc mm m
day
MPa
) for hydrogen gas. These nacre-like structures are also electronically conductive (up to 370
30 S cm
). Specifically, the reversible deconstruction of these films under basic conditions is experimentally verified. This study shows that hydrogen bonding interactions can be leveraged to form MXene LbL multilayers as gas barriers, electronically conducive coatings, and deconstructable thin films via pH control.
Wilson, J.*; 笹本 広; 舘 幸男; 川間 大介*
Applied Clay Science, 275, p.107862_1 - 107862_15, 2025/05
被引用回数:0高レベル放射性廃棄物の処分場では、鉄または鋼製ベースの容器/オーバーパック及びベントナイト緩衝材が用いられる。25年以上にわたり、鉄とベントナイトの相互作用に関わる研究が行われ、その中では、特に膨潤性粘土(スメクタイト)の鉄に富んだ層状珪酸塩(膨潤能が欠落する鉱物も存在)への変質可能性について検討がなされた。このような変質が生じると、人工バリア材の一つである緩衝材に期待されている膨潤性の欠落或いは低下を引き起こし、せん断応力に対するオーバーパックの保護性、水や溶質の移行抑制にも影響を与える。鉄とベントナイトの相互作用に関わるデータの多くは、実験及び地球化学モデリングによるものであり、ナチュラルアナログによるデータには乏しい。これらの既往データによれば、スメクタイト(アルミ質のモンモリロナイト)が鉄に富んだ固相(層状珪酸塩を含む)に変質したものや、グリーンラスト又は磁鉄鉱のような腐食生成物を伴う鉄に富んだ変質ゾーンが生成される可能性が示唆される。一方、このような変質ゾーンについての実態は複雑であり、現状での理解は不十分な部分もある。25年以上にもわたり研究が行われているにもかかわらず不確実な部分も多いが、今回のレビューにより、鉄とベントナイトの相互作用に伴い生じる尤もらしいシナリオが認識され、考えられ得る緩衝材特性への影響についても提示された。
森 愛理; Johansen, M. P.*; McGinnity, P.*; 高原 省五
Communications Earth & Environment (Internet), 6, p.356_1 - 356_11, 2025/05
被引用回数:0The presence of radionuclides in seafood following the Fukushima Daiichi Nuclear Power Plant accident in March 2011 have led to widespread and persistent concerns over seafood safety. We assess seafood ingestion doses before and after the accident for adults in the Tohoku Region of Northeast Japan. Using a Monte Carlo approach, we evaluate 23 anthropogenic and natural radionuclides alongside realistic seafood consumption rates. In the first year after the accident, the ingestion dose from accident-derived radionuclides was 19 Sv for consumers exposed to the 95th percentile dose, contributing only 2% of the total seafood ingestion dose, which includes natural radionuclides such as
Po and
Pb. After the third year, the dose from accident-derived radionuclides was indistinguishable to that from pre-accident background levels. These findings suggest that, with seafood restrictions in place, the impact of accident-related releases on seafood ingestion doses was minor and relatively short-lived compared with that of natural radionuclides.
友田 陽*; Harjo, S.; 徐 平光; 諸岡 聡; Gong, W.; Wang, Y.*
Metals, 15(6), p.610_1 - 610_19, 2025/05
Lattice parameters of product and matrix phases in steels have been measured using in situ X-ray and neutron diffraction during forward and reverse transformations. These parameters are influenced by temperature, transformation-induced internal stresses, alloying element partitioning, crystal defects, and magnetic strains. Disentangling these contributions is essential for understanding lattice behavior. This review explores internal strain (stress) associated with ferrite, pearlite, bainite, martensite, and reverse austenite transformations, emphasizing the distinction between diffusional and displacive mechanisms. It also examines how plastic deformation of austenite affects subsequent bainite or martensite formation. The roles of dislocations and vacancies are identified as critical areas for further research.
Hartzell, S.*; Parisi, A.*; 佐藤 達彦; Beltran, C. J.*; Furutani, K. M.*
Physics in Medicine & Biology, 70(10), p.105010_1 - 105010_19, 2025/05
被引用回数:0In this study, we presented the implementation of the Analytical Microdosimetric Function (AMF) within the TOPAS Monte Carlo platform as an efficient and accurate surrogate for track structure simulations. The AMF extension demonstrated strong agreement with TOPAS nBio track structure simulations for ions relevant to particle therapy and space applications, while offering significant computational advantages.
Myagmarjav, O.; 田中 伸幸; 野口 弘喜; 上地 優; 小野 正人; 野村 幹弘*; 竹上 弘彰
Progress in Nuclear Science and Technology (Internet), 7, p.235 - 242, 2025/05
Hydrogen plays an important role in the transition to clean energy and the achievement of net-zero emissions. Thermochemical iodine-sulfur (IS) process, which uses nuclear heat to decompose water, is considered the most prospective method for producing large amounts of hydrogen without emitting carbon dioxide. The IS process consists of three coupled chemical reactions (Bunsen reaction, sulfuric acid decomposition, and hydrogen iodide decomposition). A major challenge for the practical application of the IS process is the efficient separation of hydrogen from the mixed corrosive gas of hydrogen iodide and iodine generated during hydrogen iodide decomposition (2HI H
+ I
). A membrane that can efficiently separate H
while treating this corrosive HI gas has not yet been developed. In this study, a membrane with high separation performance and corrosion stability was developed by fabricating a three-layer structure consisting of a base
-alumina support tube, a middle silica layer and a top H
-selective silica layer. By selecting the dipping time and CVD time, which are critical to the properties of the resulting silica layers, the prepared membrane showed high separation performance. For instance, the H
/SF
selectivity varied between 1622 and 1671 in the temperature range of 30-200
C. The result suggests that the developed membranes had no defects, especially existence of pinholes. HI stability tests also showed that these membrane were stable in corrosive environments.
加藤 優*; Zheng, J.*; Deng, Y.*; 斎藤 史恵*; 鵜沼 佑規*; 岡 紗雪*; 田村 和久; 八木 一三*
ACS Catalysis, 15(10), p.7710 - 7719, 2025/04
被引用回数:0Nitrous oxide (NO) is a greenhouse and an ozone-depleting gas. Electrocatalytic N
O reduction reaction (N
ORR) is known to be catalyzed at noble metal electrodes such as Pd and Pt, and the surface modification of such noble metals with Sn is known to increase the N
ORR in acidic media. However, the role of Sn at the surface remains unclear. In this work, N
ORR activity was investigated for single-crystalline Pt, Pd, and Pd-Pt electrodes with the (111) or (100) plane in the presence and absence of Sn at the electrode surface in acidic media. In situ X-ray crystal truncation rod (CTR) measurements of Sn-modified Pt(111) and Pd(111) electrodes revealed the presence of metallic Sn and SnO at their surfaces. The surface Sn modification enhances the N
ORR activity for Pd-Pt(100) or Pd(100) electrodes but not for the Pt(111), Pd-Pt(111), or Pt(100) electrodes.