Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 37

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Study on optimizing microwave heating denitration method and powder characteristics of uranium trioxide

Segawa, Tomoomi; Kawaguchi, Koichi; Kato, Yoshiyuki; Ishii, Katsunori; Suzuki, Masahiro; Fujita, Shunya*; Kobayashi, Shohei*; Abe, Yutaka*; Kaneko, Akiko*; Yuasa, Tomohisa*

Proceedings of 2019 International Congress on Advances in Nuclear Power Plants (ICAPP 2019) (Internet), 9 Pages, 2019/05

A solution of plutonium nitrate and uranyl nitrate is converted into a mixed oxide by microwave heating denitration method. In the present study, for improving the efficiency of microwave heating and achieving high-temperature uniformity to produce homogeneous UO$$_{3}$$ powder, the microwave heating test of potassium chloride and uranyl nitrate solution, and numerical simulation analysis were conducted. The potassium chloride agar was adjusted to the dielectric loss, which is close to that of the uranyl nitrate solution and the optimum support table height was estimated to be 50 mm for denitration of the uranyl nitrate solution by microwave heating. The adiabator improved the efficiency of microwave heating denitration. Moreover, the powder yield was improved by using the adiabator owing to ease of scraping of the denitration product from the bottom of the denitration vessel.

Journal Articles

Mechanism of flashing phenomena by microwave heating and influence of high dielectric constant solution

Fujita, Shunya*; Abe, Yutaka*; Kaneko, Akiko*; Yuasa, Tomohisa*; Segawa, Tomoomi; Kato, Yoshiyuki; Kawaguchi, Koichi; Ishii, Katsunori

Proceedings of 11th Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-11) (Internet), 7 Pages, 2018/11

Mixed uranium oxide and plutonium oxide powder is produced from uranyl nitrate and plutonium nitrate mixed solution by the microwave heating denitration method in the spent fuel reprocessing process. Since the microwave heating method is accompanied by a boiling phenomenon, it is necessary to fully grasp the operating conditions in order to avoid flashing and spilling in the mass production of denitrification technology for the future. In this research, it was clarified that the heat transfer coefficient became lower as the dielectric constant increased. The dominant factor of the blowing up phenomena is supposed to be generation of the innumerable bubble rather than bubble's growth.

Journal Articles

Mechanism of flashing phenomena induced by microwave heating

Fujita, Shunya*; Abe, Yutaka*; Kaneko, Akiko*; Yuasa, Tomohisa*; Segawa, Tomoomi; Yamada, Yoshikazu; Kato, Yoshiyuki; Ishii, Katsunori

Proceedings of 26th International Conference on Nuclear Engineering (ICONE-26) (Internet), 8 Pages, 2018/07

Mixed uranium oxide and plutonium oxide powder is produced from uranyl nitrate and plutonium nitrate mixed solution by the microwave heating denitration method in the spent fuel reprocessing process. Since the microwave heating method is accompanied by a boiling phenomenon, it is necessary to fully grasp the operating conditions in order to avoid flashing and spilling in the mass production of denitrification technology for the future. In this research, it was confirmed that a potassium chloride aqueous solution as a simulant of uranyl nitrate aqueous solution with high dielectric loss cause loss of microwave at the solution surface as the dielectric loss increased with the increase of KCl concentration by experimental and electromagnetic field analysis, and revealed that the change in the heating condition affects the generation of flushing.

Journal Articles

Development of the pump-integrated intermediate heat exchanger in advanced loop-type sodium-cooled fast reactor for demonstration

Amano, Katsunori; Enuma, Yasuhiro; Futagami, Satoshi; Inoue, Tomoyuki*; Watanabe, Sota*

Proceedings of 24th International Conference on Nuclear Engineering (ICONE-24) (DVD-ROM), 7 Pages, 2016/06

In the framework of GIF, SDC and SDG for the generation IV SFRs have been developed in the circumstance of worldwide deployment of SFRs. JAEA and MFBR have been investigating design study of an advanced loop-type SFR to satisfy SDC in the feasibility study of SDG for SFR. In this study, the ability of the pump/IHX in the advanced loop-type SFR for the safety measures has been evaluated. In addition to the safety measures, maintainability and reparability are taken into account in the advanced loop-type SFR design study. The pump/IHX has been modified to satisfy these requirements. This paper describes the modifications for the ability to withstand a severe earthquake, the reliability of the guard vessel in the primary coolant leak, and the reliability of expansion joints in a sodium-water reaction. The evaluations of thermal transient, structural vibration with pump rotation and wear-out of IHX tubes, that has been adversely effected by the modifications, were described as well.

Journal Articles

New injection bump power supply of the J-PARC RCS

Takayanagi, Tomohiro; Ueno, Tomoaki*; Horino, Koki; Tobita, Norimitsu; Hayashi, Naoki; Kinsho, Michikazu; Irie, Yoshiro*; Okabe, Kota; Tani, Norio; Naito, Shingo*; et al.

Proceedings of 12th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1169 - 1174, 2015/09

The new injection bump power supply for the shift bump magnet of the beam injection sub-systems at the J-PARC (Japan Proton Accelerator Research Complex) 3-GeV RCS (Rapid Cycling Synchrotron) has been developed and manufactured. The power capacity of the new power supply was more than doubled with the injection beam energy upgrading of the LINAC (Linear Accelerator) from 181 MeV to 400 MeV. Furthermore, the low ripple noise on the output current was required to prevent the resonance of the RF shield loop at the ceramic duct with the excitation magnetic field. The power supply newly adopted a capacitor commutation method to form the trapezoid waveform pattern (bump waveform). This paper reports characteristic about the new power supply.

Journal Articles

Crack growth behavior of F82H steel in the 288$$^{circ}$$C water

Ito, Yuzuru; Saito, Masahiro*; Abe, Katsunori*; Wakai, Eiichi

Journal of Plasma and Fusion Research SERIES, Vol.11, p.73 - 78, 2015/03

Crack growth is a one of the key mechanical properties for the design evaluation in fusion materials to be tested at the High Flux Test Module (HFTM) in IFMIF. In this study, crack growth rate of the F82H steel in the 288$$^{circ}$$C water was investigated by using an almost standard size specimen in order to avoid the specimen size effect on the crack growth. It was found that the typical intergranular fracture surface could be obtained during the crack propagation even at room temperature. Chromium carbide, Cr$$_{23}$$C$$_{6}$$, precipitation along the grain boundaries in F82H steel may influence the intergranular fracture under the fatigue crack propagation at room temperature in air. The possible evidence of crack growth in the 288$$^{circ}$$C water was also observed. The crack growth rate at 30 MPa $$sqrt[]{m}$$ in the 288$$^{circ}$$C water was conservatively estimated to about 7$$times$$10$$^{-11}$$ m/s. Further systematic study of crack growth, and the improvement of surface finishing against crack propagation are necessary for the design evaluation in fusion materials.

Journal Articles

Effect of hydrogen on crack growth behavior in F82H steel using small-size specimen

Ito, Yuzuru; Saito, Masahiro*; Abe, Katsunori*; Wakai, Eiichi

Small Specimen Test Techniques; 6th Volume (ASTM STP 1576), p.209 - 224, 2015/00

Journal Articles

Development of small specimen test techniques for the IFMIF test cell

Wakai, Eiichi; Kim, B. J.; Nozawa, Takashi; Kikuchi, Takayuki; Hirano, Michiko*; Kimura, Akihiko*; Kasada, Ryuta*; Yokomine, Takehiko*; Yoshida, Takahide*; Nogami, Shuhei*; et al.

Proceedings of 24th IAEA Fusion Energy Conference (FEC 2012) (CD-ROM), 6 Pages, 2013/03

JAEA Reports

Plan and reports of coupled irradiation (JRR-3 and JOYO of research reactors) and hot facilities work (WASTEF, JMTR-HL, MMF and FMF); R&D project on irradiation damage management technology for structural materials of long-life nuclear plant

Matsui, Yoshinori; Takahashi, Hiroyuki; Yamamoto, Masaya; Nakata, Masahito; Yoshitake, Tsunemitsu; Abe, Kazuyuki; Yoshikawa, Katsunori; Iwamatsu, Shigemi; Ishikawa, Kazuyoshi; Kikuchi, Taiji; et al.

JAEA-Technology 2009-072, 144 Pages, 2010/03

JAEA-Technology-2009-072.pdf:45.01MB

"R&D Project on Irradiation Damage Management Technology for Structural Materials of Long-life Nuclear Plant" was carried out from FY2006 in a fund of a trust enterprise of the Ministry of Education, Culture, Sports, Science and Technology. The coupled irradiations or single irradiation by JOYO fast reactor and JRR-3 thermal reactor were performed for about two years. The irradiation specimens are very important materials to establish of "Evaluation of Irradiation Damage Indicator" in this research. For the acquisition of the examination specimens irradiated by the JOYO and JRR-3, we summarized about the overall plan, the work process and the results for the study to utilize these reactors and some facilities of hot laboratory (WASTEF, JMTR-HL, MMF and FMF) of the Oarai Research-and-Development Center and the Nuclear Science Research Institute in the Japan Atomic Energy Agency.

Journal Articles

Dynamics of ion internal transport barrier in LHD heliotron and JT-60U tokamak plasmas

Ida, Katsumi*; Sakamoto, Yoshiteru; Yoshinuma, Mikiro*; Takenaga, Hidenobu; Nagaoka, Kenichi*; Hayashi, Nobuhiko; Oyama, Naoyuki; Osakabe, Masaki*; Yokoyama, Masayuki*; Funaba, Hisamichi*; et al.

Nuclear Fusion, 49(9), p.095024_1 - 095024_9, 2009/09

 Times Cited Count:26 Percentile:25.37(Physics, Fluids & Plasmas)

Dynamics of ion internal transport barrier (ITB) formation and impurity transport both in the Large Helical Device (LHD) heliotron and JT-60U tokamak are described. Significant differences between heliotron and tokamak plasmas are observed. The location of the ITB moves outward during the ITB formation regardless of the sign of magnetic shear in JT-60U and the ITB becomes more localized in the plasma with negative magnetic shear. In LHD, the low Te/Ti ratio ($$<$$ 1) of the target plasma for the high power heating is found to be necessary condition to achieve the ITB plasma and the ITB location tends to expand outward or inward depending on the condition of the target plasmas. Associated with the formation of ITB, the carbon density tends to be peaked due to inward convection in JT-60U, while the carbon density becomes hollow due to outward convection in LHD. The outward convection observed in LHD contradicts the prediction by neoclassical theory.

JAEA Reports

Re-assembly technology establishment of Material Testing Rig with Temperature Control (MARICO-2)

Abe, Kazuyuki; Kobayashi, Takashi*; Kajima, Hisashi*; Yoshikawa, Katsunori; Nagamine, Tsuyoshi; Nakamura, Yasuo

JAEA-Technology 2008-008, 53 Pages, 2008/03

JAEA-Technology-2008-008.pdf:19.28MB

MARICO-2 is a Testing Rig for the continuous irradiation examination of ODS ferrite steel etc.. It was necessary to re-assemble of MARICO-2 in Fuel Monitoring Facility (FMF). However, MARICO-2 is not applicable a past technology of re-assembly because it is a Rig of the total length about 11 m and its hex-tube must be welded by remote control. Then, MARICO-2 re-assembly technology development was executed, the device was designed, it produced, and the procedure of re-assembly by remote control was established.

Journal Articles

Spectroscopic observations of beam and source plasma light and testing Cs-deposition monitor in the large area negative ion source for LHD-NBI

Oka, Yoshihide*; Tsumori, Katsuyoshi*; Ikeda, Katsunori*; Kaneko, Osamu*; Nagaoka, Kenichi*; Osakabe, Masaki*; Takeiri, Yasuhiko*; Asano, Eiji*; Komada, Seiji*; Kondo, Tomoki*; et al.

Review of Scientific Instruments, 79(2), p.02C105_1 - 02C105_4, 2008/02

 Times Cited Count:0 Percentile:100(Instruments & Instrumentation)

In the present studies, we studied the cesium lines in the source plasma during beam shots on the LND MN-NBI system. It was found for the first time in the LHD-source 2, that both the amount of Cs I (neutral Cs) and Cs II (Cs$$^{+}$$) in the source plasma light rose sharply when beam acceleration began, and continued rising during a 10 s pulse. We think that this was because the cesium was evaporated/sputtered from the source backplate by the back-streaming positive ions.

Journal Articles

Extended steady-state and high-beta regimes of net-current free heliotron plasmas in the Large Helical Device

Motojima, Osamu*; Yamada, Hiroshi*; Komori, Akio*; Oyabu, Nobuyoshi*; Muto, Takashi*; Kaneko, Osamu*; Kawahata, Kazuo*; Mito, Toshiyuki*; Ida, Katsumi*; Imagawa, Shinsaku*; et al.

Nuclear Fusion, 47(10), p.S668 - S676, 2007/10

 Times Cited Count:34 Percentile:22.29(Physics, Fluids & Plasmas)

The performance of net-current free heliotron plasmas has been developed by findings of innovative operational scenarios in conjunction with an upgrade of the heating power and the pumping/fuelling capability in the Large Helical Device (LHD). Consequently, the operational regime has been extended, in particular, with regard to high density, long pulse length and high beta. Diversified studies in LHD have elucidated the advantages of net-current free heliotron plasmas. In particular, an internal diffusion barrier (IDB) by a combination of efficient pumping of the local island divertor function and core fuelling by pellet injection has realized a super dense core as high as 5$$times$$10$$^{20}$$ m$$^{-3}$$, which stimulates an attractive super dense core reactor. Achievements of a volume averaged beta of 4.5% and a discharge duration of 54 min with a total input energy of 1.6 GJ (490 kW on average) are also highlighted. The progress of LHD experiments in these two years is overviewed by highlighting IDB, high-beta and long pulse.

Journal Articles

Extended steady-state and high-beta regimes of net-current free heliotron plasmas in the large helical device

Motojima, Osamu*; Yamada, Hiroshi*; Komori, Akio*; Oyabu, Nobuyoshi*; Kaneko, Osamu*; Kawahata, Kazuo*; Mito, Toshiyuki*; Muto, Takashi*; Ida, Katsumi*; Imagawa, Shinsaku*; et al.

Proceedings of 21st IAEA Fusion Energy Conference (FEC 2006) (CD-ROM), 12 Pages, 2007/03

The performance of net-current free Heliotron plasmas has been developed by findings of innovative operational scenarios in conjunction with an upgrade of the heating power and the pumping/fueling capability in the Large Helical Device (LHD). Consequently, the operational regime has been extended, in particular, with regard to high density, long pulse length and high beta. Diversified studies in LHD have elucidated the advantages of net-current free heliotron plasmas. In particular, an Internal Diffusion Barrier (IDB) by combination of efficient pumping of the local island divertor function and core fueling by pellet injection has realized a super dense core as high as 5$$times$$10$$^{20}$$m$$^{-3}$$, which stimulates an attractive super dense core reactor. Achievements of a volume averaged beta of 4.5 % and a discharge duration of 54-min. with a total input energy of 1.6 GJ (490 kW in average) are also highlighted. The progress of LHD experiments in these two years is overviewed with highlighting IDB, high $$beta$$ and long pulse.

Journal Articles

Progress in physics and technology developments for the modification of JT-60

Tamai, Hiroshi; Matsukawa, Makoto; Kurita, Genichi; Hayashi, Nobuhiko; Urata, Kazuhiro*; Miura, Yushi; Kizu, Kaname; Tsuchiya, Katsuhiko; Morioka, Atsuhiko; Kudo, Yusuke; et al.

Plasma Science and Technology, 6(1), p.2141 - 2150, 2004/02

 Times Cited Count:2 Percentile:92.83(Physics, Fluids & Plasmas)

The dominant issue for the the modification program of JT-60 (JT-60SC) is to demonstrate the steady state reactor relevant plasma operation. Physics design on plasma parameters, operation scenarios, and the plasma control method are investigated for the achievement of high-$$beta$$. Engineering design and the R&D on the superconducting magnet coils, radiation shield, and vacuum vessel are performed. Recent progress in such physics and technology developments is presented.

Journal Articles

Microstructural development and radiation hardening of neutron irradiated Mo-Re alloys

Nemoto, Yoshiyuki; Hasegawa, Akira*; Sato, Manabu*; Abe, Katsunori*; Hiraoka, Yutaka*

Journal of Nuclear Materials, 324(1), p.62 - 70, 2004/01

 Times Cited Count:33 Percentile:9.74(Materials Science, Multidisciplinary)

In this study, stress-relieved specimens and recrystallized specimens of pure Mo and Mo-Re alloys (Re content=2,4,5,10,13 and 41wt%) were neutron irradiated up to 20dpa at various temperatures (681-1072K). On microstructure observation, sigma phase and chi phase precipitates were observed in all irradiated Mo-Re alloys. Voids were observed in all irradiated specimen, and dislocation loops and dislocations were observed in the specimens that were irradiated at lower temperatures. On Vickers hardness testing, all of the irradiated specimens showed hardening. Especially Mo-41Re were drastically embrittled after irradiation at 874K or less. From these results, authors discuss about relation between microstructure development and radiation hardening, embrittlement, and propose the most efficient Re content and thermal treatment for Mo-Re alloys to be used under irradiation condition.

Journal Articles

Heating and current drive by N-NBI in JT-60U and LHD

Kaneko, Osamu*; Yamamoto, Takumi; Akiba, Masato; Hanada, Masaya; Ikeda, Katsunori*; Inoue, Takashi; Nagaoka, Kenichi*; Oka, Yoshihide*; Osakabe, Masaki*; Takeiri, Yasuhiko*; et al.

Fusion Science and Technology, 44(2), p.503 - 507, 2003/09

 Times Cited Count:0 Percentile:100(Nuclear Science & Technology)

High energy negative-ion-based neutral beam injection (N-NBI) is expected as an efficient and reliable tool of heating and current driving for reactor plasmas such as ITER. A world wide activity on developing technology of negative ion production and beam formation started in 1980ユs and the great progress has been achieved up to now. In particular, Japan has two large projects that planned adopting N-NBI for real plasma experiments; the JT-60U tokamak and the LHD heliotron, which further motivated the R&D activity. These R&D programs were carried out at JAERI and NIFS separately in Japan, and both were successfully done. The first beam injection experiment was made on the JT-60U in 1996, followed by the LHD in 1998. They were the first experiments on heating plasma by high energy beam in tokamaks and in stellerators, and the obtained results were very promising.

Journal Articles

Objectives and design of the JT-60 superconducting tokamak

Ishida, Shinichi; Abe, Katsunori*; Ando, Akira*; Chujo, T.*; Fujii, Tsuneyuki; Fujita, Takaaki; Goto, Seiichi*; Hanada, Kazuaki*; Hatayama, Akiyoshi*; Hino, Tomoaki*; et al.

Nuclear Fusion, 43(7), p.606 - 613, 2003/07

no abstracts in English

Journal Articles

Objectives and design of the JT-60 superconducting tokamak

Ishida, Shinichi; Abe, Katsunori*; Ando, Akira*; Cho, T.*; Fujii, Tsuneyuki; Fujita, Takaaki; Goto, Seiichi*; Hanada, Kazuaki*; Hatayama, Akiyoshi*; Hino, Tomoaki*; et al.

Nuclear Fusion, 43(7), p.606 - 613, 2003/07

 Times Cited Count:33 Percentile:27.31(Physics, Fluids & Plasmas)

no abstracts in English

Journal Articles

R&D of a MW-class solid-target for spallation neutron source

Kawai, Masayoshi*; Furusaka, Michihiro*; Kikuchi, Kenji; Kurishita, Hiroaki*; Watanabe, Ryuzo*; Li, J.*; Sugimoto, Katsuhisa*; Yamamura, Tsutomu*; Hiraoka, Yutaka*; Abe, Katsunori*; et al.

Journal of Nuclear Materials, 318, p.35 - 55, 2003/05

R&D works for MW class solid target composed of tungsten to produce pulsed intense neutron source has been made in order to construct a future scattering facility. Three methods were investigated to prevent corrosion of tungsten from water; those are hipping, brazing and electric coating in molten salt bath. Hipping condition was optimized to be 1500 degree C in the previous work: here small punch test shows highest load for crack initiation of hipped materials at the boundary of W/Ta. The basic techniques for the other two methods were developed. Erosion test showed that uncovered W is susceptible of flowing water velocity. At high velocity w is easy to be eroded. For solid target design slab type and rod type targets were studied. As long as the optimized neutron performance is concerned, 1MW solid target is better than mercury target.

37 (Records 1-20 displayed on this page)