Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Miyazawa, Takeshi; Uwaba, Tomoyuki; Yano, Yasuhide; Tanno, Takashi; Otsuka, Satoshi; Onizawa, Takashi; Ando, Masanori; Kaito, Takeji
JAEA-Technology 2024-009, 140 Pages, 2024/10
For the purpose of enhancing the reliability of fast reactor fuel designing using modified type 316 steel, the out-of-pile and in-pile mechanical data of modified type 316 steel cladding tubes and wrapper tubes were statistically analyzed with the knowledge on material science and engineering; the high-temperature strength equations of modified type 316 steel, which can be applied to high-dose neutron irradiation environment, were derived. The out-of-pile high-temperature tensile and creep data of modified type 316 steel cladding tubes and wrapper tubes were derived up to 900C, which is higher than the upper limit temperature of anticipated transient event of fast reactor. Using the extended database, the best-fit equation and the lower limit equation were derived for out-of-pile 0.2% proof strength, ultimate tensile strength and creep rupture strength while the best-fit equation and the upper and lower limit equations for creep strain. Furthermore, the degradation factors for tensile and creep strength, which will be produced by in-reactor environment (i.e., neutron irradiation in liquid sodium), were evaluated using the existing neutron irradiation data of modified type 316 steel, which were derived using the experimental fast reactor Joyo, the French proto-type fast reactor Phenix, the American experimental fast reactor FFTF. The derived equations were validated by the comparison with the experimental data.
Okafuji, Takashi*; Miura, Kazuhiro*; Sago, Hiromi*; Murakami, Hisatomo*; Watakabe, Tomoyoshi; Ando, Masanori; Miyazaki, Masashi
Proceedings of ASME 2024 Pressure Vessels & Piping Conference (PVP 2024) (Internet), 8 Pages, 2024/07
We have developed the buckling strength equations of vessels for fast reactors with seismic isolation system. The applicability of the buckling equations was confirmed by a series of buckling tests and analyses under monotonic or cyclic axial compressive load accompanied with constant horizontal load in the previous reports. In this report, we proposed a correction factor to reduce the buckling strength calculated by the buckling equations for large initial imperfections. A series of elastic-plastic buckling analyses considering large displacement and large strain theories was conducted to Grade 91 steel and austenitic stainless steel vessels which has a wide range of dimensions, initial imperfection amplitude, and vertical/horizontal load ratio. The simulation results showed that the correction factor generally shows a reduction tendency of buckling strength corresponding to initial imperfection amplitude, and the modified buckling equations are applicable to the vessels in fast reactors even for large initial imperfection amplitude which exceeds half the wall thickness.
Takeyasu, Masanori; Mikami, Satoshi; Ando, Masaki; Hokama, Tomonori
JAEA-Testing 2023-005, 17 Pages, 2024/03
As part of the research aimed at developing a detector to easily perform in-situ gamma-ray spectrometry, the applicability of a SrI(Eu) scintillation detector to in-situ gamma-ray spectrometry was investigated. In this study, the characteristics of the SrI
(Eu) detector were evaluated for in-situ gamma-ray spectrometry. Intercomparison measurements of in-situ gamma-ray spectrometry using the SrI
(Eu) detector and Ge semiconductor detectors were conducted, and the applicability of the SrI
(Eu) detector was examined. To characterize the SrI
(Eu) detector, the peak efficiency of the SrI
(Eu) detector was measured with respect to the change of incident gamma-ray energy. The angular dependence of the peak efficiency of the SrI
(Eu) detector was also measured. As the result of the intercomparison measurement of in-situ gamma-ray spectrometry, the radionuclides quantified by Ge detectors were Cs-134, Cs-137, Pb-214, Bi-214, Tl-208, Ac-228 and K-40. On the other hand, those by SrI
(Eu) detector were only Cs-137 and K-40 which had relatively high radioactive intensity. The deposition density of Cs-137 and the concentration of K-40 in soil measured by the SrI
(Eu) detector showed relatively good agreements with those by Ge detectors. From these results, it was suggested that the in-situ measurement using a SrI
(Eu) detector was available for radionuclides which had high radioactive intensity and whose gamma-ray peaks were not interfered by those of other radionuclides in gamma-ray spectrum. During an accident at nuclear power plant, various radionuclides are released into the environment, but radionuclides with short half-life decayed and radionuclides with long half-life only exist at mid-to-long term environmental monitoring situations, when in-situ gamma-ray spectrometry using a SrI
(Eu) detector is applicable.
Futagami, Satoshi; Ando, Masanori; Yamano, Hidemasa
Transactions of the 27th International Conference on Structural Mechanics in Reactor Technology (SMiRT 27) (Internet), 10 Pages, 2024/03
Yamano, Hidemasa; Futagami, Satoshi; Ando, Masanori; Kurisaka, Kenichi
Transactions of the 27th International Conference on Structural Mechanics in Reactor Technology (SMiRT 27) (Internet), 11 Pages, 2024/03
In this study, the dynamic structural analysis of the reactor vessel for excessive earthquake using the FINAS/STAR code has shown the elephant foot buckling deformation and calculated the cumulative fatigue failure fraction. Using the calculation results, this paper describes the fragility curve using the safety factor method, indicating the significantly improved curve compared the previous one.
Noi, Hiromi*; Watanabe, Sota*; Kubo, Koji*; Okajima, Satoshi; Ando, Masanori
Nihon Kikai Gakkai M&M 2023 Zairyo Rikigaku Kanfuarensu Koen Rombunshu (Internet), p.CL0712_1 - CL0712_5, 2023/09
no abstracts in English
Yamano, Hidemasa; Futagami, Satoshi; Ando, Masanori
Mechanical Engineering Journal (Internet), 10(4), p.23-00043_1 - 23-00043_12, 2023/08
This study has conducted a detailed structural analysis of a reactor vessel (RV) in a loop-type sodium-cooled fast reactor using a general-purpose finite element analysis code, FINAS/STAR, to understand its deformation behavior under extremely high temperature conditions and to identify the areas which should be focused to mitigate impacts of failure. The RV was heated from the normal operation condition to the sodium boiling temperature in the upper sodium plenum during 20 hours assuming depressurization. The analysis has revealed less significant stress and strain which were sufficiently lower than failure criteria. The upper body of RV was identified as the important area in terms of mitigation of structural failure. The RV was eventually deformed downward about 16 cm, resulting in no failure. This effect contributes to maintaining RV sodium level in a long term, thereby enhancing the RV resilience.
Okafuji, Takashi*; Miura, Kazuhiro*; Sago, Hiromi*; Murakami, Hisatomo*; Ando, Masanori; Okajima, Satoshi
Proceedings of ASME 2023 Pressure Vessels and Piping Conference (PVP 2023) (Internet), 8 Pages, 2023/07
Buckling evaluation methods capable of evaluating elasto-plastic buckling under axial compression, bending, and shear loads are required for cylindrical vessels of fast reactors to cope with thinning due to increasing diameter and application to the seismic isolation design against huge seismic ground motion. In this study, in order to confirm the applicability of the proposal evaluation method, several buckling tests and FE analyses were carried out using the specimens made of Gr.91 and austenitic stainless steel. The buckling modes and strength data in the load region where the interaction of cyclic axial compression, bending and shear buckling could occur were examined. As a result, it was confirmed that the proposal evaluation method estimated the buckling load in the tests conservatively.
Yamano, Hidemasa; Futagami, Satoshi; Ando, Masanori
Proceedings of 29th International Conference on Nuclear Engineering (ICONE 29) (Internet), 7 Pages, 2022/08
This study has conducted a detailed structural analysis of a reactor vessel (RV) in a loop-type sodium-cooled fast reactor using a general-purpose finite element analysis code, FINAS/STAR, to understand its deformation behavior under extremely high temperature conditions and to identify the areas which should be focused to mitigate impacts of failure. The RV was heated from the normal operation condition to the sodium boiling temperature in the upper sodium plenum during 20 hours assuming depressurization. The analysis has revealed less significant stress and strain which were sufficiently lower than failure criteria. The upper body of RV was identified as the important area in terms of mitigation of structural failure. The RV was eventually deformed downward about 16 cm, resulting in no failure. This effect contributes to maintaining RV sodium level in a long term, thereby enhancing the RV resilience.
Okafuji, Takashi*; Miura, Kazuhiro*; Sago, Hiromi*; Murakami, Hisatomo*; Ando, Masanori; Okajima, Satoshi
Proceedings of ASME 2022 Pressure Vessels and Piping Conference (PVP 2022) (Internet), 9 Pages, 2022/07
Buckling evaluation methods capable of evaluating elasto-plastic buckling under axial compression, bending, and shear loads are required for cylindrical vessels of fast reactors to cope with thinning due to increasing diameter and application to the seismic isolation design against huge seismic ground motion. In this study, in order to confirm the applicability of the proposal evaluation method, several buckling tests and FE analyses were carried out using the specimens made of austenitic stainless steel. The buckling modes and strength data in the load region where the interaction of cyclic axial compression, bending and shear buckling could occur were examined. As a result, it was confirmed that the proposal evaluation method estimated the buckling load in the tests conservatively. Moreover, a series of finite element analyzes to confirm the applicability of the evaluation method in 2.25Cr-1Mo steel and up to 650 C were conducted.
Ohshima, Hiroyuki; Morishita, Masaki*; Aizawa, Kosuke; Ando, Masanori; Ashida, Takashi; Chikazawa, Yoshitaka; Doda, Norihiro; Enuma, Yasuhiro; Ezure, Toshiki; Fukano, Yoshitaka; et al.
Sodium-cooled Fast Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.3, 631 Pages, 2022/07
This book is a collection of the past experience of design, construction, and operation of two reactors, the latest knowledge and technology for SFR designs, and the future prospects of SFR development in Japan. It is intended to provide the perspective and the relevant knowledge to enable readers to become more familiar with SFR technology.
Futagami, Satoshi; Ando, Masanori; Yamano, Hidemasa
Transactions of the 26th International Conference on Structural Mechanics in Reactor Technology (SMiRT-26) (Internet), 9 Pages, 2022/07
Ando, Masanori; Hirose, Yuichi*; Takano, Masahito*
Journal of Pressure Vessel Technology, 143(6), p.061505_1 - 061505_9, 2021/12
Times Cited Count:1 Percentile:6.39(Engineering, Mechanical)This study compares and assesses the different fatigue and creep-fatigue life evaluation methods by performing tests of perforated plate made of Mod.9Cr-1Mo steel. Multi-perforated plate was subjected to mechanical cyclic loading at 550C, and crack initiation and propagation on the surfaces of the holes were observed. A series of finite element analyses were carried out to predict the number of cycles to failure by the several failure life evaluation methods, and these predictions were then compared with the test results. Several types of evaluation methods that use the elastic FEA were applied.
Okafuji, Takashi*; Miura, Kazuhiro*; Sago, Hiromi*; Murakami, Hisatomo*; Ando, Masanori; Miyazaki, Masashi
Proceedings of ASME 2021 Pressure Vessels and Piping Conference (PVP 2021) (Internet), 9 Pages, 2021/07
Buckling evaluation methods capable of evaluating elasto-plastic buckling under axial compression, bending, and shear loads are required for cylindrical vessels of fast reactors to cope with thinning due to increasing diameter and application to the seismic isolation design against huge seismic ground motion. In this study, in order to confirm the applicability of the proposal evaluation method, several buckling tests and FE analyses were carried out using the specimens made of Modified 9Cr-1Mo steel. The buckling modes and strength data in the load region where the interaction of cyclic axial compression, bending and shear buckling could occur were examined. As a result, it was confirmed that the proposal evaluation method estimated the buckling load in the tests conservatively. Moreover, a series of finite element analyzes using a model with residual stress due to welding revealed that the effect of residual stress on buckling strength is negligible in the evaluation method.
Ando, Masanori; Toyota, Kodai; Hashidate, Ryuta; Onizawa, Takashi
Proceedings of ASME 2021 Pressure Vessels and Piping Conference (PVP 2021) (Internet), 10 Pages, 2021/07
The ASME Boiler and Pressure Vessel Code (ASME BPVC) Section III, Division 5 had provided only one design fatigue curve for Grade 91 steel (Gr.91) at 540 C until 2019 version. To overcome this disadvantage, The ASME Section III Working Group had taken an action to incorporate the temperature-dependent design fatigue curves for Gr. 91 developed by Japan Society of Mechanical Engineers into ASME BPVC Section III Division 5. As the results, the temperature dependent design fatigue curves are provided in the 2021 edition of the ASME BPVC. To clear the features of the best fit fatigue curve equation, 305 data stored in the database were analyzed and the statistic values and the values of 95% and 99% lower confidence bound calculated by failure probability assessment were clarified. Moreover, some additional available data of fatigue and creep-fatigue test obtained in Japan are also indicated for considering the creep-fatigue damage evaluation under elevated temperature condition.
Okafuji, Takashi*; Miura, Kazuhiro*; Sago, Hiromi*; Murakami, Hisatomo*; Ando, Masanori; Miyazaki, Masashi
Proceedings of ASME 2020 Pressure Vessels and Piping Conference (PVP 2020) (Internet), 9 Pages, 2020/08
Buckling evaluation methods capable of evaluating elasto-plastic buckling under axial compression, bending, and shear loads are required for cylindrical vessels of fast reactors to cope with thinning due to increasing diameter and application to the seismic isolation design against huge seismic ground motion. In this study, in order to confirm the applicability of the proposal evaluation method, several buckling tests and FE analyses were carried out using the specimens made of Modified 9Cr-1Mo steel. The buckling modes and strength data in the load region where the interaction of axial compression, bending and shear buckling could occur were examined. As a result, it was confirmed that the proposal evaluation method estimated the buckling load in the tests conservatively. In addition, buckling strength evaluated by elasto-plastic buckling analysis had good accuracy compared to each test result by considering the stress-strain relationship and imperfection of test specimen.
Ando, Masanori; Okajima, Satoshi; Imo, Kazumichi*
Proceedings of 2019 ASME Pressure Vessels and Piping Conference (PVP 2019) (Internet), 7 Pages, 2019/07
For the required thickness estimation against buckling in the elevated temperature design, the external pressure chart for two kinds of ferritic steel, 2 Cr-1Mo and Mod.9Cr-1Mo steel, was developed. On the basis of the guideline described in the ASME BPVC Section II, Part D, Mandatory Appendix 3 with mechanical and physical properties provided in the JSME fast reactor code, the external pressure charts for each material were constructed. As the result, three external pressure charts with digital values were proposed for elevated temperature design. And the rationalization effect from the current alternative using was evaluated by the sample problem. This proposal resolves the two issues. One is alternative use of inferior material strength chart over the 150
C. The other is the external pressure chart above 480
C for these ferritic steels are not available.
Yada, Hiroki; Ando, Masanori; Tsukimori, Kazuyuki; Ichimiya, Masakazu*; Anoda, Yoshinari*
Proceedings of 2018 ASME Pressure Vessels and Piping Conference (PVP 2018), 9 Pages, 2018/07
Containment vessel (CV) of nuclear power plants is an important structure to prevent radioactive release, however, the safety margin of the CV against pressure are not numerically clarified. The head plate structure is included in CV boundary of fast reactor. In order to develop the evaluation method of the ultimate strength of the head plate structure at beyond the specified limit, pressure failure tests and finite element analysis (FEA) of the head plates subjected to convex side pressure were performed. In the test of the relative thin thickness head plate, non-axisymmetric deformations was observed in post buckling behavior and failure pressure was lower than other cases. To evaluate non-axisymmetric deformations in the test, FEA using 3-D solid model constructed by precise dimensions of the test specimen, moreover, FEA using simplified model with uniform or non-uniform thickness were performed. Through analyses, the feature of the post buckling behavior was discussed.
Otani, Akihito*; Kai, Satoru*; Kaneko, Naoaki*; Watakabe, Tomoyoshi; Ando, Masanori; Tsukimori, Kazuyuki*
Proceedings of 2018 ASME Pressure Vessels and Piping Conference (PVP 2018), 10 Pages, 2018/07
This paper demonstrates an application result of the JSME Seismic Code Case to an actual complex piping system. The secondary coolant piping system of Japanese Fast Breeder Reactor, Monju, was selected as a representative of the complex piping systems. The elastic-plastic time history analysis for the piping system was performed and the piping system has been evaluated according to the JSME Seismic Code Case. The evaluation by the Code Case provides a reasonable result in terms of the piping fatigue evaluation that governs seismic integrity of piping systems.
Tsukimori, Kazuyuki*; Yada, Hiroki; Ando, Masanori; Ichimiya, Masakazu*; Anoda, Yoshinari*
Proceedings of 12th International Conference on Asian Structure Integrity of Nuclear Components (ASINCO-12) (CD-ROM), p.105 - 121, 2018/04
In FBR plants the head plate constitutes a part of the boundary of the containment vessel (CV), therefore, it is an important issue if the function as the boundary is maintained or not in the severe accident. And also it is important to evaluate the leak rate from the penetrated crack of the head plate, in order to estimate the effect of released fission product out of CV. Authors conducted pressure endurance tests of head plate specimens subjected to external pressure, which covered post-buckling behaviors and until crack penetration. In this paper leak rate test results at several pressure levels are introduced and the tendency of leak rate behaviors with relation of the penetrate crack length and the pressure level are discussed. Also, the modeling of head plate thickness distribution for 3-D analyses based on the detailed 3-D measurement data of specimens is discussed, which possibly relates to the 3-D deformation patterns observed in the tests and the length of penetration cracks.