Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Dioguardi, A. P.*; Yasuoka, Hiroshi*; Thomas, S. M.*; Sakai, Hironori; Cary, S. K.*; Kozimor, S. A.*; Albrecht-Schmitt, T. E.*; Choi, H. C.*; Zhu, J.-X.*; Thompson, J. D.*; et al.
Physical Review B, 99(3), p.035104_1 - 035104_6, 2019/01
Times Cited Count:9 Percentile:42.15(Materials Science, Multidisciplinary)We present a detailed nuclear magnetic resonance (NMR) study of Pu in bulk and powdered single-crystal plutonium tetraboride (PuB), which has recently been investigated as a potential correlated topological insulator. The Pu NMR spectra are consistent with axial symmetry of the shift tensor showing for the first time that Pu NMR can be observed in an anisotropic environment and up to room temperature. The temperature dependence of the Pu shift, combined with a relatively long spin-lattice relaxation time (), indicate that PuB adopts a nonmagnetic state with gaplike behavior consistent with our density functional theory calculations. The temperature dependencies of the NMR Knight shift and imply bulk gaplike behavior confirming that PuB is a good candidate topological insulator.
Bandodkar, A. J.*; Gutruf, P.*; Choi, J.*; Lee, K.-H.*; Sekine, Yurina; Reeder, J. T.*; Jeang, W. J.*; Aranyosi, A. J.*; Lee, S. P.*; Model, J. B.*; et al.
Science Advances (Internet), 5(1), p.eaav3294_1 - eaav3294_15, 2019/01
Times Cited Count:501 Percentile:99.88(Multidisciplinary Sciences)Interest in advanced wearable technologies increasingly extends beyond systems for biophysical measurements to those that enable continuous, non-invasive monitoring of biochemical markers in biofluids. Here, we introduce battery-free, wireless microelectronic platforms that perform sensing via schemes inspired by the operation of biofuel cells. Combining these systems in a magnetically releasable manner with chrono-sampling microfluidic networks that incorporate assays based on colorimetric sensing yields thin, flexible, lightweight, skin-interfaced technologies with broad functionality in sweat analysis. A demonstration device allows simultaneous monitoring of sweat rate/loss, along with quantitative measurements of pH and of lactate, glucose and chloride concentrations using biofuel cell and colorimetric approaches.
Choi, S.-K.*; Tanida, Kiyoshi; Belle Collaboration*; 174 of others*
Physical Review D, 91(9), p.092011_1 - 092011_12, 2015/05
Times Cited Count:16 Percentile:54.98(Astronomy & Astrophysics)Nishiuchi, Mamiko; Choi, I. W.*; Daido, Hiroyuki; Nakamura, Tatsufumi*; Pirozhkov, A. S.; Yogo, Akifumi*; Ogura, Koichi; Sagisaka, Akito; Orimo, Satoshi; Daito, Izuru*; et al.
Plasma Physics and Controlled Fusion, 57(2), p.025001_1 - 025001_9, 2015/02
Times Cited Count:3 Percentile:13.15(Physics, Fluids & Plasmas)Projection images of a metal mesh produced by directional MeV electron beam together with directional proton beam, emitted simultaneously from a thin foil target irradiated by an ultrashort intense laser. The mesh patterns are projected to each detector by the electron beam and the proton beam originated from tiny virtual sources of 20 micron meter and 10 micron meter diameters, respectively. Based on the observed quality and magnification of the projection images, we estimate sizes and locations of the virtual sources for both beams and characterize their directionalities. To carry out physical interpretation of the directional electron beam qualitatively, we perform 2D particle-in-cell simulation which reproduces a directional escaping electron component, together with a non-directional dragged-back electron component, the latter mainly contributes to building a sheath electric field for proton acceleration.
Choi, I. W.*; Kim, I. J.*; Pae, K. H.*; Nam, K. H.*; Lee, C.-L.*; Yun, H.*; Kim, H. T.*; Lee, S. K.*; Yu, T. J.*; Sung, J. H.*; et al.
Applied Physics Letters, 99(18), p.181501_1 - 181501_3, 2011/11
Times Cited Count:17 Percentile:56.85(Physics, Applied)We report the manufacturing of a thin foil target made of conjugated polymer, and the simultaneous observation of laser accelerated ions and second harmonic radiation, when irradiated with ultrahigh-contrast laser pulse at a maximum intensity of 410 W/cm. Maximum proton energy of 8 MeV is achieved along the target normal direction. Strong second harmonic with over 6% energy ratio compared to fundamental is emitted along the specular direction. Two-dimensional particle-in-cell simulations confirm the simultaneous generation of protons and high-order harmonics, which demonstrates the feasibility of applications requiring particle and radiation sources at once, effectively using the same laser and target.
Sagisaka, Akito; Pirozhkov, A. S.; Mori, Michiaki; Yogo, Akifumi; Ogura, Koichi; Orimo, Satoshi; Nishiuchi, Mamiko; Ma, J.*; Kiriyama, Hiromitsu; Kanazawa, Shuhei; et al.
NIFS-PROC-85, p.30 - 33, 2011/02
The experiment of proton generation is performed for developing the laser-driven ion source. We observe proton signals in the laser-plasma interaction by using a thin-foil target. To get higher energy protons the size of the preformed plasma is reduced by changing the laser contrast level. In the high-contrast laser pulse case the maximum energy of the protons generated at rear side of the target increases.
Sagisaka, Akito; Pirozhkov, A. S.; Mori, Michiaki; Yogo, Akifumi; Ogura, Koichi; Orimo, Satoshi; Nishiuchi, Mamiko; Ma, J.*; Kiriyama, Hiromitsu; Kanazawa, Shuhei; et al.
Reza Kenkyu, 38(9), p.702 - 705, 2010/09
High-intensity laser and thin-foil interactions produce high-energy particles, hard X-ray, high-order harmonics, and terahertz (THz) radiation. A proton beam driven by a high-intensity laser has received attention as a compact ion source for medical applications. In this study we have tested simultaneous generation of protons and THz radiation from a thin-foil target. We use a Ti:sapphire laser system (J-KAREN) at JAEA. A laser beam is focused by an off-axis parabolic mirror at the thin-foil target. We observed the high-energy proton in the rear side of the target and THz radiation in the reflected direction. Next, high energy protons are observed by reducing the size of preformed plasma.
Mori, Michiaki; Yogo, Akifumi; Kiriyama, Hiromitsu; Nishiuchi, Mamiko; Ogura, Koichi; Orimo, Satoshi; Ma, J.*; Sagisaka, Akito; Kanazawa, Shuhei; Kondo, Shuji; et al.
IEEE Transactions on Plasma Science, 36(4), p.1872 - 1877, 2008/08
Times Cited Count:7 Percentile:27.90(Physics, Fluids & Plasmas)A dependence of cut-off proton kinetic energy on laser prepulse duration has been observed. ASE pedestal duration is controlled by a fast electro-optic pulse slicer where the risetime is estimated to be 130 ps. We demonstrate a new correlated spectral technique for determining this risetime using a stretched, frequency chirped pulse.
Li, Z.*; Daido, Hiroyuki; Fukumi, Atsushi*; Bulanov, S. V.; Sagisaka, Akito; Ogura, Koichi; Yogo, Akifumi; Nishiuchi, Mamiko; Orimo, Satoshi; Mori, Michiaki; et al.
Physics Letters A, 369(5-6), p.483 - 487, 2007/10
Times Cited Count:10 Percentile:53.31(Physics, Multidisciplinary)The energy spectra of energetic protons emitted in the normal direction from a 5-m thick copper tape irradiated by p-, circularly-, and s-polarized 55-fs laser pulses with intensity of 8-910W/cm are measured together with the angular distribution and energy spectra of hot electrons by the target normal direction. The protons with energy up to 1.34 MeV in the rear target normal direction and hot electrons in the laser propagation direction are found. The characters of protons and electrons driven by the circularly-polarized irradiation are close to that driven by the p-polarized one, which is much different from the case at laser intensity of 2-310W/cm.
Yogo, Akifumi; Daido, Hiroyuki; Fukumi, Atsushi*; Li, Z.*; Ogura, Koichi; Sagisaka, Akito; Pirozhkov, A. S.; Nakamura, Shu*; Iwashita, Yoshihisa*; Shirai, Toshiyuki*; et al.
Physics of Plasmas, 14(4), p.043104_1 - 043104_6, 2007/04
Times Cited Count:63 Percentile:87.96(Physics, Fluids & Plasmas)Fast protons are observed by a newly-developed time-of-flight spectrometer, which provides proton-energy distributions immediately after the irradiation of a laser pulse having an intensity of W/cm onto a 5-m-thick copper foil. The maximum proton energy is found to increase when the intensity of a fs-prepulse arriving 9 ns before the main pulse increases from 10 to 10 W/cm. Interferometric measurement indicates that the preformed-plasma expansion at the front surface is smaller than 15 m, which corresponds to the spatial resolution of the diagnostics. This sharp gradient of the plasma makes a beneficial effect on increasing the absorption efficiency of the main-pulse energy, resulting in the increase in the proton energy. This is supported by the result that the X-ray intensity from the laser plasma clearly increases with the prepulse intensity.
Sagisaka, Akito; Pirozhkov, A. S.; Daido, Hiroyuki; Fukumi, Atsushi*; Li, Z.*; Ogura, Koichi; Yogo, Akifumi; Oishi, Yuji*; Nayuki, Takuya*; Fujii, Takashi*; et al.
Applied Physics B, 84(3), p.415 - 419, 2006/09
Times Cited Count:21 Percentile:65.58(Optics)no abstracts in English
Kang, J.-S.*; Kim, J. H.*; Sekiyama, Akira*; Kasai, Shuichi*; Suga, Shigemasa*; Han, S. W.*; Kim, K. H.*; Choi, E. J.*; Kimura, Tsuyoshi*; Muro, Takayuki*; et al.
Physical Review B, 68(1), p.012410_1 - 012410_4, 2003/07
Times Cited Count:21 Percentile:67.75(Materials Science, Multidisciplinary)no abstracts in English
Akino, Norio; Kubo, Shinji; Takase, Kazuyuki; Hino, Ryutaro; Choi, K.*
Nihon Kikai Gakkai Ryutai Kogaku Bumon Koenkai 2000 Koen Rombunshu (CD-ROM), 4 Pages, 2000/00
no abstracts in English
Orimo, Satoshi; Yogo, Akifumi; Ogura, Koichi; Sagisaka, Akito; Mori, Michiaki; Kiriyama, Hiromitsu; Kondo, Shuji; Yamamoto, Yoichi*; Shimomura, Takuya*; Tanoue, Manabu*; et al.
no journal, ,
We are investigating an intense fs-laser driven MeV proton source using a thin foil, and its applications. Simultaneous imaging of a sample with a proton and an X-ray beams has been demonstrated by a ultra-short pulse higt intensity Ti:Sapphire laser systems at JAEA and GIST. For generating a short-pulse proton beams and X-rays, an intense laser pulse irradiates a tape targets. The p-polarized laser pulse with 50 mm diameter is focused onto the cupper tape target at 45 degree incident angle with focal length of 238 mm (F/4.8), giving an intensity on target of 3-910W/cm10. The cupper and polyimide tape was 5, 7.5 micron in thickness and 20 mm in width. The target system supplies a fresh surface to the focus spot at every shot. We obtained simultaneously the projection image of a Ni mesh pattern having a periodically structured pattern by the proton detected CR39 and X-rays detected on imaging plate.
Sagisaka, Akito; Yogo, Akifumi; Daido, Hiroyuki; Fukumi, Atsushi*; Li, Z.*; Ogura, Koichi; Takai, Mamiko; Orimo, Satoshi; Hayashi, Yukio; Mori, Michiaki; et al.
no journal, ,
no abstracts in English
Ogura, Koichi; Shizuma, Toshiyuki; Hayakawa, Takehito; Orimo, Satoshi; Sagisaka, Akito; Nishiuchi, Mamiko; Mori, Michiaki; Yogo, Akifumi; Pirozhkov, A. S.; Sugiyama, Hironori*; et al.
no journal, ,
Ultrashort and high intensity laser can induce high energy protons. Proton beams have a wide range of applications such as in the production of radioisotopes and proton therapy. An energy of the proton beam has a wide distribution. The distribution of activity in depth is calculated while laser induced protons are injected into an iron plate.
Ogura, Koichi; Shizuma, Toshiyuki; Hayakawa, Takehito; Orimo, Satoshi; Sagisaka, Akito; Nishiuchi, Mamiko; Mori, Michiaki; Yogo, Akifumi; Pirozhkov, A. S.; Sugiyama, Hironori*; et al.
no journal, ,
Protons with energies up to 3 MeV have been generated by the irradiation of a 7.5 m thickness target by a 1 Hz table top laser with intensity of 700mJ. These protons were used to induce the nuclear reaction 7Li(p,n)7Be. Simultaneously, energy of proton was detected by a time of flight method.