検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 4 件中 1件目~4件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Chiral Dirac fermion in a collinear antiferromagnet

Zhang, A.*; Deng, K.*; Sheng, J.*; Liu, P.*; Kumar, S.*; 島田 賢也*; Jiang, Z.*; Liu, Z.*; Shen, D.*; Li, J.*; et al.

Chinese Physics Letters, 40(12), p.126101_1 - 126101_8, 2023/12

 被引用回数:2 パーセンタイル:57.37(Physics, Multidisciplinary)

In a Dirac semimetal, the massless Dirac fermion has zero chirality, leading to surface states connected adiabatically to a topologically trivial surface state as well as vanishing anomalous Hall effect. Recently, itis predicted that in the nonrelativistic limit of certain collinear antiferromagnets, there exists a type of chiral "Dirac-like" fermion, whose dispersion manifests four-fold degenerate crossing points formed by spin-degenerate linear bands, with topologically protected Fermi arcs. Here, by combining with neutron diffraction and first-principles calculations, we suggest a multidomain collinear antiferromagnetic configuration, rendering the existence of the Fermi-arc surface states induced by chiral Dirac-like fermions.

論文

Modeling of hardness and welding residual stress in Type 316 stainless steel components for the assessment of stress corrosion cracking

Li, S.; 山口 義仁; 勝山 仁哉; Li, Y.; Deng, D.*

Proceedings of ASME 2023 Pressure Vessels and Piping Conference (PVP 2023) (Internet), 7 Pages, 2023/07

In this work, a framework was proposed on the comprehensive assessment of hardness and welding residual stress in Type 316 austenitic stainless steel welded joints. Firstly, an 8-pass butt-welded joint made of Type 316 stainless steel was fabricated. Finite element analysis of the welded joint was performed to investigate hardness and welding residual stress distributions. The grain growth model was developed for the hardness prediction. The Chaboche combined isotropic-kinematic strain hardening model and time-temperature dependent annealing model were adopted. The relationships between the Vickers hardness and the uniaxial plastic strain as well as grain size were collected from published literatures. The simulation results of the grain size and accumulated equivalent plastic strain were used for the hardness prediction of the welded joint. The predicted hardness was compared with the experimental data of hardness mapping. The distribution of welding residual stress on the outer surface of the welded pipe was measured by using the X-ray diffraction method and strain gauge method, respectively. The predicted welding residual stresses were compared with the measurements. The results obtained showed that the developed numerical approach can predict the hardness and welding residual stress of Type 316 stainless steel welded joints with satisfactory accuracy. The effects of structural constraint and heat input on the hardness and welding residual stress will be investigated as further works, as described in the proposed framework.

論文

Li(Zn,Mn)As as a new generation ferromagnet based on a I-II-V semiconductor

Deng, Z.*; Jin, C. Q.*; Liu, Q. Q.*; Wang, X. C.*; Zhu, J. L.*; Feng, S. M.*; Chen, L. C.*; Yu, R. C.*; Arguello, C.*; 後神 達郎*; et al.

Nature Communications (Internet), 2, p.1425_1 - 1425_5, 2011/08

 被引用回数:160 パーセンタイル:93.76(Multidisciplinary Sciences)

(Ga,Mn)Asは典型的な強磁性III-V族半導体として知られている。これは3価のGa原子を2価のMnで置き換えたものであるが、化学的溶解度が限られているため準安定であり、薄膜でしか製作できないものであった。また電子ドープも行うことができなかった。この困難な条件を超えるため、Masekらは理論的にI-II-V族半導体LiZnAsを提案した。この物質では原子価が等しい(Zn,Mn)の置き換えによる磁性の発現とLi濃度を過剰あるいは不足させることによるキャリアードープを独立に制御可能である。本研究では世界で初めてバルクな状態でのLi$$_{1+y}$$(Zn$$_{1-x}$$Mn$$_x$$)Asの合成に成功した。わずかにLiを過剰にすることで、50Kまでの温度で強磁性が現れること、またp型のキャリアーを持つことが観測され、これらの結果を報告した。

口頭

Effect of annealing models on the welding-induced residual stress and plastic strain in Type 316 stainless steel welded joints

Li, S.; 山口 義仁; 勝山 仁哉; Sun, W.*; Deng, D.*; Li, Y.

no journal, , 

Many flaws due to stress corrosion cracking (SCC) have been reported in the heat affected zone of austenitic stainless steel welded joints in nuclear power plants. High tensile residual stresses and hardness induced by the welding process may affect the initiation and propagation of SCC. During the welding thermal cycles, the accumulated strain hardening can be reduced or eliminated below the melting point due to the dynamic recovery, recrystallization, and grain growth of the material, which is known as the annealing effect. Different annealing models were proposed including the single-stage and two-stage annealing models, which are temperature dependent models to eliminate the accumulated strain hardening in one or two steps, and dynamic annealing models, in which the time-temperature dependent annealing effect can be considered. In this study, numerical investigations were carried out to evaluate the effect of different annealing models on the distributions of welding residual stress and accumulated plastic strain. Two butt-welded joints of Type 316 stainless steel were fabricated. The welding residual stresses of the two welded joints were measured using the neutron diffraction method and sectioning method, respectively. Two-dimensional finite element analysis was performed based on Abaqus platform. Chaboche combined isotropic-kinematic strain hardening model was used. The simulation results of welding residual stresses were compared with measurements. The results obtained have shown that the annealing effect can significantly influence the formation of the accumulated plastic strain and residual stresses in Type 316 stainless steel welded joints. The residual stresses will be overestimated if the annealing effect is neglected, or a relatively high value of the annealing temperature is used. The annealing model plays a major role in determining the magnitude of the accumulated plastic strain in the welding simulation.

4 件中 1件目~4件目を表示
  • 1