Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Ho, H. Q.; Ishii, Toshiaki; Nagasumi, Satoru; Ono, Masato; Shimazaki, Yosuke; Ishitsuka, Etsuo; Sawahata, Hiroaki; Goto, Minoru; Simanullang, I. L.*; Fujimoto, Nozomu*; et al.
Nuclear Engineering and Design, 417, p.112795_1 - 112795_6, 2024/02
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Simanullang, I. L.*; Nakagawa, Naoki*; Ho, H. Q.; Nagasumi, Satoru; Ishitsuka, Etsuo; Iigaki, Kazuhiko; Fujimoto, Nozomu*
Annals of Nuclear Energy, 177, p.109314_1 - 109314_8, 2022/11
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Ho, H. Q.; Ishii, Toshiaki; Nagasumi, Satoru; Ono, Masato; Shimazaki, Yosuke; Ishitsuka, Etsuo; Goto, Minoru; Simanullang, I. L.*; Fujimoto, Nozomu*; Iigaki, Kazuhiko
Nuclear Engineering and Design, 396, p.111913_1 - 111913_9, 2022/09
Times Cited Count:1 Percentile:19.69(Nuclear Science & Technology)Isogawa, Hiroki*; Naoi, Motomasa*; Yamasaki, Seiji*; Ho, H. Q.; Katayama, Kazunari*; Matsuura, Hideaki*; Fujimoto, Nozomu*; Ishitsuka, Etsuo
JAEA-Technology 2022-015, 18 Pages, 2022/07
As a summer holiday practical training 2021, the impact of 10 years long-term shutdown on critical control rod position of the HTTR and the delayed neutron fraction () of the VHTRC-1 core were investigated using Monte-Carlo MVP code. As a result, a long-term shutdown of 10 years caused the critical control rods of the HTTR to withdraw about 4.00.8 cm compared to 3.9 cm in the experiment. The change in critical control rods position of the HTTR is due to the change of some fission products such as Pu, Am, Pm, Sm, Gd. Regarding the calculation of the VHTRC-1 core, the value is underestimate of about 10% in comparison with the experiment value.
Sakon, Atsushi*; Hashimoto, Kengo*; Sano, Tadafumi*; Nakajima, Kunihiro*; Kanda, Shun*; Goto, Masaki*; Fukaya, Yuji; Okita, Shoichiro; Fujimoto, Nozomu*; Takahashi, Yoshiyuki*
KURNS Progress Report 2021, P. 100, 2022/07
The R&D of reactor noise analysis to obtain HTGR nuclear characteristics have been performed with Kyoto University Critical Assembly (KUCA). In the last study, a neutron detector located about 55 cm away of fuel assembly measured the auto power spectral density. However, the prompt neutron decay constants obtained by this detector was different from that of other detectors. The objective of this study is experimental study of reactor noise analysis by the power spectrum method using neutron detector placed outside reactor core.
Ishitsuka, Etsuo; Mitsui, Wataru*; Yamamoto, Yudai*; Nakagawa, Kyoichi*; Ho, H. Q.; Ishii, Toshiaki; Hamamoto, Shimpei; Nagasumi, Satoru; Takamatsu, Kuniyoshi; Kenzhina, I.*; et al.
JAEA-Technology 2021-016, 16 Pages, 2021/09
As a summer holiday practical training 2020, the feasibility study for nuclear design of a nuclear battery using HTTR core was carried out, and the downsizing of reactor core were studied by the MVP-BURN. As a result, it is clear that a 1.6 m radius reactor core, containing 54 (183 layers) fuel blocks with 20% enrichment of U, and BeO neutron reflector, could operate continuously for 30 years with thermal power of 5 MW. Number of fuel blocks of this compact core is 36% of the HTTR core. As a next step, the further downsizing of core by changing materials of the fuel block will be studied.
Ikeda, Reiji*; Ho, H. Q.; Nagasumi, Satoru; Ishii, Toshiaki; Hamamoto, Shimpei; Nakano, Yumi*; Ishitsuka, Etsuo; Fujimoto, Nozomu*
JAEA-Technology 2021-015, 32 Pages, 2021/09
Burnup calculation of the HTTR considering temperature distribution and detailed burning regions was carried out using MVP-BURN code. The results show that the difference in k, as well as the difference in average density of some main isotopes, is insignificant between the cases of uniform temperature and detailed temperature distribution. However, the difference in local density is noticeable, being 6% and 8% for U and Pu, respectively, and even 30% for the burnable poison B. Regarding the division of burning regions to more detail, the change of k is also small of 0.6%k/k or less. The small burning region gives a detailed distribution of isotopes such as U, Pu, and B. As a result, the effect of graphite reflector and the burnup behavior could be evaluated more clearly compared with the previous study.
Fujimoto, Nozomu*; Tada, Kenichi; Ho, H. Q.; Hamamoto, Shimpei; Nagasumi, Satoru; Ishitsuka, Etsuo
Annals of Nuclear Energy, 158, p.108270_1 - 108270_8, 2021/08
Times Cited Count:3 Percentile:37.09(Nuclear Science & Technology)Fujimoto, Nozomu*; Fukuda, Kodai*; Honda, Yuki*; Tochio, Daisuke; Ho, H. Q.; Nagasumi, Satoru; Ishii, Toshiaki; Hamamoto, Shimpei; Nakano, Yumi*; Ishitsuka, Etsuo
JAEA-Technology 2021-008, 23 Pages, 2021/06
The effect of mesh division around the burnable poison rod on the burnup calculation of the HTTR core was investigated using the SRAC code system. As a result, the mesh division inside the burnable poison rod does not have a large effect on the burnup calculation, and the effective multiplication factor is closer to the measured value than the conventional calculation by dividing the graphite region around the burnable poison rod into a mesh. It became clear that the mesh division of the graphite region around the burnable poison rod is important for more appropriately evaluating the burnup behavior of the HTTR core..
Ho, H. Q.; Fujimoto, Nozomu*; Hamamoto, Shimpei; Nagasumi, Satoru; Goto, Minoru; Ishitsuka, Etsuo
Nuclear Engineering and Design, 377, p.111161_1 - 111161_9, 2021/06
Times Cited Count:3 Percentile:37.09(Nuclear Science & Technology)Adachi, Nozomu*; Matsuo, Yasutaka*; Todaka, Yoshikazu*; Fujimoto, Mikiya*; Hino, Masahiro*; Mitsuhara, Masatoshi*; Oba, Yojiro; Shiihara, Yoshinori*; Umeno, Yoshitaka*; Nishida, Minoru*
Tribology International, 155, p.106781_1 - 106781_9, 2021/03
Times Cited Count:11 Percentile:65.79(Engineering, Mechanical)Ishitsuka, Etsuo; Nakashima, Koki*; Nakagawa, Naoki*; Ho, H. Q.; Ishii, Toshiaki; Hamamoto, Shimpei; Takamatsu, Kuniyoshi; Kenzhina, I.*; Chikhray, Y.*; Matsuura, Hideaki*; et al.
JAEA-Technology 2020-008, 16 Pages, 2020/08
As a summer holiday practical training 2019, the feasibility study for nuclear design of a nuclear battery using HTTR core was carried out, and the U enrichment and burnable poison of the fuel, which enables continuous operation for 30 years with thermal power of 5 MW, were studied by the MVP-BURN. As a result, it is clear that a fuel with U enrichment of 12%, radius of burnable poison and natural boron concentration of 1.5 cm and 2wt% are required. As a next step, the downsizing of core will be studied.
Nagasumi, Satoru; Matsunaka, Kazuaki*; Fujimoto, Nozomu*; Ishii, Toshiaki; Ishitsuka, Etsuo
JAEA-Technology 2020-003, 13 Pages, 2020/05
The influence of the control rod model on the nuclear characteristics of the HTTR has been evaluated, by creating detailed control rod model, in which geometric shape was close to that of the actual control rod structure, in MVP code. According to refinement of the control rod model, the critical control rod position was 11 mm lower than that of the conventional model, and this was close to the measured value of 1775 mm. The reactivity absorbed by the shock absorber located at the tip of the control rod was 0.2%k/k, and this was 14 mm difference at the critical control rod position. Considering the effect of refinement of the control rod and the effect of the shock absorber, the correction amount for the analysis value in SRAC code due to the shape effect of the control rod, is -0.05%k/k in reactivity, and -3 mm in the critical control rod position at low temperature criticality.
Ho, H. Q.; Honda, Yuki*; Hamamoto, Shimpei; Ishii, Toshiaki; Takada, Shoji; Fujimoto, Nozomu*; Ishitsuka, Etsuo
Journal of Nuclear Engineering and Radiation Science, 6(2), p.021902_1 - 021902_6, 2020/04
Ho, H. Q.; Ishida, Hiroki*; Hamamoto, Shimpei; Ishii, Toshiaki; Fujimoto, Nozomu*; Takaki, Naoyuki*; Ishitsuka, Etsuo
Nuclear Engineering and Design, 352, p.110174_1 - 110174_7, 2019/10
Times Cited Count:2 Percentile:19.31(Nuclear Science & Technology)Ono, Masato; Kozawa, Takayuki; Fujimoto, Nozomu*
JAEA-Technology 2019-012, 15 Pages, 2019/09
The High Temperature Engineering Test Reactor has a neutron source of Cf to start up the reactor and to confirm count rates of wide range monitors. The half-life of Cf is short, about 2.6 years, so it is necessary to replace at an appropriate time. In order to estimate the period to replace, it is necessary to consider not only the half-life but also the fluctuation of the count rate of the wide range monitor to prevent alarm. For that reason, the method has been derived to predict a minimum count rate from relationship between the count rate and the standard deviation of the count rate of the wide range monitors. As a result of predicting the count rate using this method, it was found that the minimum count rate reaches to 3.0cps in 2022 and 1.5 cps in 2024. Therefore, it is necessary to exchange Cf by 2024.
Ishitsuka, Etsuo; Matsunaka, Kazuaki*; Ishida, Hiroki*; Ho, H. Q.; Ishii, Toshiaki; Hamamoto, Shimpei; Takamatsu, Kuniyoshi; Kenzhina, I.*; Chikhray, Y.*; Kondo, Atsushi*; et al.
JAEA-Technology 2019-008, 12 Pages, 2019/07
As a summer holiday practical training 2018, the feasibility study for nuclear design of a nuclear battery using HTTR core was carried out. As a result, it is become clear that the continuous operations for about 30 years at 2 MW, about 25 years at 3 MW, about 18 years at 4 MW, about 15 years at 5 MW are possible. As an image of thermal design, the image of the nuclear battery consisting a cooling system with natural convection and a power generation system with no moving equipment is proposed. Further feasibility study to confirm the feasibility of nuclear battery will be carried out in training of next fiscal year.
Ho, H. Q.; Honda, Yuki*; Hamamoto, Shimpei; Ishii, Toshiaki; Fujimoto, Nozomu*; Ishitsuka, Etsuo
Applied Radiation and Isotopes, 140, p.209 - 214, 2018/10
Times Cited Count:4 Percentile:35.54(Chemistry, Inorganic & Nuclear)Ho, H. Q.; Honda, Yuki*; Hamamoto, Shimpei; Ishii, Toshiaki; Takada, Shoji; Fujimoto, Nozomu*; Ishitsuka, Etsuo
Proceedings of 9th International Topical Meeting on High Temperature Reactor Technology (HTR 2018) (USB Flash Drive), 6 Pages, 2018/10
Ho, H. Q.; Morita, Keisuke*; Honda, Yuki; Fujimoto, Nozomu*; Takada, Shoji
Proceedings of 2017 International Congress on Advances in Nuclear Power Plants (ICAPP 2017) (CD-ROM), 8 Pages, 2017/04