Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Asahi, Yoshimitsu; Fukuda, Shigeki; Shiramizu, Daiki; Miyata, Koshi; Tone, Masaya; Katsuoka, Nanako; Maeda, Yuta; Aoyama, Yusuke; Niitsuma, Koichi; Kobayashi, Hidekazu; et al.
JAEA-Technology 2024-024, 271 Pages, 2025/03
A glass melter for the vitrification process of highly active liquid waste in the Tokai Reprocessing Plant, TVF's 3rd melter, was built, and the glass of 18 vitrified waste canisters in weight was melted and poured through a cold test operation. The molten glass surface was covered by a cold cap from feeding fiberglass cartridges saturated with non-radioactive simulant liquid waste as raw material, whose components are equivalent to actual waste. Differences in inherent characteristics of the thermal behavior between the 2nd and the 3rd melter due to the difference in design were considered to establish the procedure to control the new melter. The melter's condition was stabilized at a higher glass temperature and the cooling of 1 kW less in each of the two main electrodes, compared to the 2nd one. Under 39 kW joule heating of the main electrodes with 26 Nm3/h coolant flow rate, it showed the capability to finish heating the bottom furnace in 5 hours before pouring, 2 hours shorter than the 2nd melter. Measurements of the temperature distributions in molten glass and casing surface yielded data that is efficient for developing a simulation model. After Platinum Group Elements (PGE) concentration saturates in the molten glass, feeding raw material and discharging glass were suspended to examine a holding state, indicating PGE settling could retard. During the holding test, observation of the melting process of the cold cap declared that the surface was covered by a thin layer with almost non-fluidity. It will be a reason for choosing the no-slip condition of a fluid calculation, even in the hot-top condition. The investigation of PGE discharging behavior by analyzing the elemental composition of poured glass showed the accumulated PGE amount in the 3rd melter is small compared to the 2nd melter. Inspection of the melter inside after draining out concluded that there were neither significant residual glass nor refractory fragments.
Murai, Naoki*; Fukuda, Tatsuo; Kobayashi, Tatsuya*; Nakajima, Masamichi*; Uchiyama, Hiroshi*; Ishikawa, Daisuke*; Tsutsui, Satoshi*; Nakamura, Hiroki; Machida, Masahiko; Miyasaka, Shigeki*; et al.
Physical Review B, 93(2), p.020301_1 - 020301_5, 2016/01
Times Cited Count:7 Percentile:31.95(Materials Science, Multidisciplinary)Sakanaka, Shogo*; Akemoto, Mitsuo*; Aoto, Tomohiro*; Arakawa, Dai*; Asaoka, Seiji*; Enomoto, Atsushi*; Fukuda, Shigeki*; Furukawa, Kazuro*; Furuya, Takaaki*; Haga, Kaiichi*; et al.
Proceedings of 1st International Particle Accelerator Conference (IPAC '10) (Internet), p.2338 - 2340, 2010/05
Future synchrotron light source using a 5-GeV energy recovery linac (ERL) is under proposal by our Japanese collaboration team, and we are conducting R&D efforts for that. We are developing high-brightness DC photocathode guns, two types of cryomodules for both injector and main superconducting (SC) linacs, and 1.3 GHz high CW-power RF sources. We are also constructing the Compact ERL (cERL) for demonstrating the recirculation of low-emittance, high-current beams using above-mentioned critical technologies.
Nakamura, Takashi*; Kobayashi, Nobuyuki*; Kondo, Yosuke*; Sato, Yoshiteru*; Aoi, Nori*; Baba, Hidetada*; Deguchi, Shigeki*; Fukuda, Naoki*; Gibelin, J.*; Inabe, Naoto*; et al.
Physical Review Letters, 103(26), p.262501_1 - 262501_4, 2009/12
Times Cited Count:208 Percentile:97.53(Physics, Multidisciplinary)no abstracts in English
Kawase, Keigo; Kando, Masaki; Hayakawa, Takehito; Daito, Izuru; Kondo, Shuji; Homma, Takayuki; Kameshima, Takashi; Kotaki, Hideyuki; Chen, L.*; Fukuda, Yuji; et al.
Nuclear Physics Review, 26(Suppl.), p.94 - 99, 2009/07
We constructed MeV- and sub-MeV-photon sources by means of Compton backscattering with a laser light and an electron beam at SPring-8 and KPSI-JAEA. MeV-photon source consists of a continuous-wave optically-pumped far infrared laser and an 8-GeV stored electron beam. Sub-MeV-photon source consists of a Nd:YAG pulse-laser and an 150-MeV electron beam accelerated by a microtron. Both source have been succeeded backscattered photon generation. In this talk, I will present characteristics and future prospects of these photon sources.
Nakazato, Tomoharu*; Furukawa, Yusuke*; Tanaka, Momoko; Tatsumi, Toshihiro*; Nishikino, Masaharu; Yamatani, Hiroshi*; Nagashima, Keisuke; Kimura, Toyoaki*; Murakami, Hidetoshi*; Saito, Shigeki*; et al.
Journal of Crystal Growth, 311(3), p.875 - 877, 2009/01
Times Cited Count:25 Percentile:86.36(Crystallography)The temperature dependence of scintillation properties of a hydrothermal-method-grown zinc oxide (ZnO) emission is investigated using a nickel-like silver laser emitting at 13.9 nm. A broad peak at 386 nm with a full-width at half-maximum (FWHM) of 15 nm at room temperature (298 K) is obtained. The peak position tends to be blue shifted while the FWHM becomes narrower when the crystal temperature is decreased to 25 K. Streak images fitted by a double exponential decay reveal that the measured emission decay at 105 K was = 0.88 ns and
= 2.7 ns. This decay time of a few nanoseconds is suitable for lithographic applications and is sufficiently short for the characterization of laser plasma extreme ultraviolet (EUV) sources with nanosecond durations.
Furukawa, Yusuke*; Tanaka, Momoko; Murakami, Hidetoshi*; Saito, Shigeki*; Sarukura, Nobuhiko*; Nishikino, Masaharu; Yamatani, Hiroshi; Nishimura, Hiroaki*; Mima, Kunioki*; Kagamitani, Yuji*; et al.
Reza Kenkyu, 36(APLS), p.1028 - 1030, 2008/12
Optical technologies in extreme ultraviolet (EUV) region have been receiving strong interests for the next generation lithography. Here we report properties of ZnO as scintillators in the EUV region, and to demonstrate the feasibility of using a Ni-like Ag EUV laser operated at 13.9-nm to evaluate these properties. The ZnO sample was irradiated with EUV laser pulses and the fluorescence was measured using a streak camera fitted with a spectrograph. A clear, excitonic, fluorescence peak was observed at around 380 nm with a decay lifetime of 3 ns. The prominent peak fluorescence is ideal for EUV detection and further applications including imaging.
Furukawa, Yusuke*; Tanaka, Momoko; Nakazato, Tomoharu*; Tatsumi, Toshihiro*; Nishikino, Masaharu; Yamatani, Hiroshi; Nagashima, Keisuke; Kimura, Toyoaki; Murakami, Hidetoshi*; Saito, Shigeki*; et al.
Journal of the Optical Society of America B, 25(7), p.B118 - B121, 2008/07
Times Cited Count:26 Percentile:74.03(Optics)Using EUV laser operated at 13.9 nm ZnO and GaN are shown to be excellent scintillators in this wavelength region. Especially ZnO has short response time of 3 ns and prominent peak fluorescence from excitation at 380 nm.
Sakanaka, Shogo*; Ago, Tomonori*; Enomoto, Atsushi*; Fukuda, Shigeki*; Furukawa, Kazuro*; Furuya, Takaaki*; Haga, Kaiichi*; Harada, Kentaro*; Hiramatsu, Shigenori*; Honda, Toru*; et al.
Proceedings of 11th European Particle Accelerator Conference (EPAC '08) (CD-ROM), p.205 - 207, 2008/06
Future synchrotron light sources based on the energy-recovery linacs (ERLs) are expected to be capable of producing super-brilliant and/or ultra-short pulses of synchrotron radiation. Our Japanese collaboration team is making efforts for realizing an ERL-based hard X-ray source. We report recent progress in our R&D efforts.
Tanaka, Momoko; Furukawa, Hiroyuki*; Murakami, Hidetoshi*; Saito, Shigeki*; Sarukura, Nobuhiko*; Nishikino, Masaharu; Yamatani, Hiroshi; Nagashima, Keisuke; Kagamitani, Yuji*; Ehrentraut, D.*; et al.
Journal of Physics; Conference Series, 112(4), p.042058_1 - 042058_4, 2008/00
Times Cited Count:1 Percentile:54.56(Physics, Fluids & Plasmas)Optical technologies in the extreme ultraviolet (EUV) region have been receiving strong interest for the next generation lithography. Efficient and fast scintillators are one of the key devices functioning in the EUV region. In this paper, we report excellent properties of ZnO and GaN as scintillators in the EUV region, and to demonstrate the feasibility of using a Ni-like Ag EUV laser operated at 13.9-nm to evaluate these properties. The sample was irradiated with EUV laser pulses, and the fluorescence spectrum and the fluorescence lifetime were measured using a streak camera fitted with a spectrograph. In the case of ZnO, a clear, excitonic, fluorescence peak was observed at around 380 nm with a decay lifetime of 3 ns. For GaN, a fluorescence peak at 370 nm having slower 5-ns decay time was observed. In this respect, the EUV scintillation properties of ZnO is said to be more favorable than GaN.
Tanaka, Momoko; Nishikino, Masaharu; Yamatani, Hiroshi; Nagashima, Keisuke; Kimura, Toyoaki; Furukawa, Yusuke*; Murakami, Hidetoshi*; Saito, Shigeki*; Sarukura, Nobuhiko*; Nishimura, Hiroaki*; et al.
Applied Physics Letters, 91(23), p.231117_1 - 231117_3, 2007/12
Times Cited Count:54 Percentile:84.75(Physics, Applied)The scintillation properties of a hydrothermal method grown zinc oxide (ZnO) crystal are evaluated for extreme ultraviolet (EUV) laser excitation at 13.9 nm wavelength. The exciton emission lifetime at around 380 nm is determined to be 1.1 ns, almost identical to ultraviolet laser excitation cases. This fast response time is sufficiently short for characterizing EUV lithography light sources having a few nanoseconds duration. The availability of large size ZnO crystal up to 3-inch is quite attractive for future lithography and imaging applications.
Yamazaki, Masayoshi; Chishiro, Etsuji; Kobayashi, Tetsuya; Hori, Toshihiko; Suzuki, Hiroyuki; Hasegawa, Kazuo; Anami, Shozo*; Kawamura, Masato*; Fukui, Yuji*; Nammo, Kesao*; et al.
Proceedings of 3rd Annual Meeting of Particle Accelerator Society of Japan and 31st Linear Accelerator Meeting in Japan (CD-ROM), p.391 - 393, 2006/00
no abstracts in English
Chishiro, Etsuji; Hori, Toshihiko*; Kobayashi, Tetsuya; Suzuki, Hiroyuki*; Suganuma, Kazuaki; Yamazaki, Masayoshi*; Anami, Shozo*; Fang, Z.*; Fukuda, Shigeki*; Fukui, Yuji*; et al.
Proceedings of 2nd Annual Meeting of Particle Accelerator Society of Japan and 30th Linear Accelerator Meeting in Japan, p.236 - 238, 2005/07
no abstracts in English
Hori, Toshihiko*; Chishiro, Etsuji; Yamazaki, Masayoshi*; Suzuki, Hiroyuki*; Hasegawa, Kazuo; Yoshida, Mitsuhiro*; Yamaguchi, Seiya*; Anami, Shozo*; Fukuda, Shigeki*
Proceedings of 2nd Annual Meeting of Particle Accelerator Society of Japan and 30th Linear Accelerator Meeting in Japan, p.239 - 241, 2005/07
no abstracts in English
Tezuka, Katsuhiko*; Miyake, Setsuo*; Sakamoto, Mitsunori*; Chishiro, Etsuji; Fukuda, Shigeki*; Kawamura, Masato*; Anami, Shozo*
Proceedings of 28th Linear Accelerator Meeting in Japan, p.372 - 374, 2003/07
no abstracts in English
Chishiro, Etsuji; Kobayashi, Tetsuya; Yamazaki, Masayoshi*; Suzuki, Hiroyuki*; Hori, Toshihiko*; Sakamoto, Mitsunori*; Urakata, Hiroto*; Miyake, Setsuo*; Fukuda, Shigeki*; Anami, Shozo*
Proceedings of 21st International Linac Conference, p.455 - 457, 2003/00
In the lilac of the High-Intensity Proton Accelerator Facility, 972MHz klystrons are adopted as the RF source for the acceleration from 190MeV to 400MeV. The klystron is required the RF power of 2.5 MW to drive the ACS accelerator. A prototype klystron was produced, and was evaluated the RF characteristics at the test stand in the JAERI. At the first test, a saturation power of 2.1 MW was obtain on the cathode voltage of 104kV, and an unstable output power causing by a gun oscillation was observed.
Murai, Naoki*; Fukuda, Tatsuo; Uchiyama, Hiroshi*; Tsutsui, Satoshi*; Ishikawa, Daisuke*; Kobayashi, Tatsuya*; Nakamura, Hiroki; Machida, Masahiko; Nakajima, Masamichi*; Miyasaka, Shigeki*; et al.
no journal, ,
no abstracts in English
Chishiro, Etsuji; Suzuki, Hiroyuki; Yamazaki, Masayoshi; Hori, Toshihiko; Kobayashi, Tetsuya; Fukui, Yuji*; Kawamura, Masato*; Fang, Z.*; Yamaguchi, Seiya*; Anami, Shozo*; et al.
no journal, ,
The RF compoments of the J-PARC linac have been installed in the building, and the evaluation of each compoment was started. In this workshop, we report the recent status and R&D results of the RF system.
Murai, Naoki*; Fukuda, Tatsuo; Nakajima, Masamichi*; Kobayashi, Tatsuya*; Uchiyama, Hiroshi*; Tsutsui, Satoshi*; Ishikawa, Daisuke*; Nakamura, Hiroki; Machida, Masahiko; Miyasaka, Shigeki*; et al.
no journal, ,
Furukawa, Yusuke*; Murakami, Hidetoshi*; Saito, Shigeki*; Sarukura, Nobuhiko*; Nishimura, Hiroaki*; Mima, Kunioki*; Tanaka, Momoko; Nishikino, Masaharu; Yamatani, Hiroshi; Nagashima, Keisuke; et al.
no journal, ,
Zinc oxide (ZnO) has previously been reported to be a potential light-emitting diode materia. We measured the time-resolved emission spectrum of a ZnO crystal for extreme ultraviolet (EUV) laser excitation at 13.9 nm wavelength and compared with UV excitation case. The emission lifetime was determined to be 2.6 ns. This value was not changed even for ultraviolet laser excitation. In the context of the nanosecond regime in the EUV region, ZnO crystal promises to be a feasible scintillation material.