Refine your search:     
Report No.
 - 
Search Results: Records 1-13 displayed on this page of 13
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Design and actual performance of J-PARC 3 GeV rapid cycling synchrotron for high-intensity operation

Yamamoto, Kazami; Kinsho, Michikazu; Hayashi, Naoki; Saha, P. K.; Tamura, Fumihiko; Yamamoto, Masanobu; Tani, Norio; Takayanagi, Tomohiro; Kamiya, Junichiro; Shobuda, Yoshihiro; et al.

Journal of Nuclear Science and Technology, 59(9), p.1174 - 1205, 2022/09

 Times Cited Count:3 Percentile:80.29(Nuclear Science & Technology)

In the Japan Proton Accelerator Research Complex, the purpose of the 3 GeV rapid cycling synchrotron (RCS) is to accelerate a 1 MW, high-intensity proton beam. To achieve beam operation at a repetition rate of 25 Hz at high intensities, the RCS was elaborately designed. After starting the RCS operation, we carefully verified the validity of its design and made certain improvements to establish a reliable operation at higher power as possible. Consequently, we demonstrated beam operation at a high power, namely, 1 MW. We then summarized the design, actual performance, and improvements of the RCS to achieve a 1 MW beam.

Journal Articles

Analysis of machine protection system events in the J-PARC Linac/RCS

Hayashi, Naoki; Hatakeyama, Shuichiro; Fukuta, Shimpei*

Proceedings of 18th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.679 - 682, 2021/10

In order to achieve a high availability in a user facility accelerator complex, it is necessary to understand in detail not only the simple failure cause of the magnet or the acceleration cavity power supply, but also complex interlocked events. At J-PARC, not only the primary interlock information but also the data recorded by the beam diagnostic system before the interlocked event is used to carefully reconstruct the event and clarify the cause more accurately. This time, we proceeded with the analysis based on more detailed waveform of the RCS Beam Loss Monitor and the events during simultaneous operation of MLF and MR. We present various events of the beam destination switching problem, the influence of the ion source discharged, and the events related to the RCS extraction kicker.

Journal Articles

Development of timing system for RF ion source & RFQ III test stand

Sawabe, Yuki; Ito, Yuichi; Kawase, Masato; Fukuta, Shimpei; Suzuki, Takahiro*; Kikuzawa, Nobuhiro; Ouchi, Nobuo

Proceedings of 11th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.748 - 751, 2014/10

no abstracts in English

Journal Articles

Present status of J-PARC linac

Oguri, Hidetomo; Hasegawa, Kazuo; Ito, Takashi; Chishiro, Etsuji; Hirano, Koichiro; Morishita, Takatoshi; Shinozaki, Shinichi; Ao, Hiroyuki; Okoshi, Kiyonori; Kondo, Yasuhiro; et al.

Proceedings of 11th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.389 - 393, 2014/10

no abstracts in English

Journal Articles

Increment of the machine protection system in J-PARC rapid cycling synchrotron

Yamamoto, Kazami; Kawase, Masato; Iwama, Yuhei; Fukuta, Shimpei; Kato, Yuko; Ouchi, Nobuo; Meigo, Shinichiro; Oi, Motoki; Kamikubota, Norihiko*

Proceedings of 11th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.771 - 774, 2014/10

The radiation leak accident happened in the hadron experimental hall of J-PARC on May 23, 2013. The accident was caused by a target sublimation due to an unanticipated beam from the 50 GeV main ring (MR). To detect and prevent the radiation leakage in all facilities of J-PARC, we improve the machine protection system (MPS). In the J-PARC 3GeV synchrotron (Rapid Cycling Synchrotron, RCS), a monitoring system of an abnormal state of the extraction beam to the mercury target of material life science experiment facility (MLF) were prepared. The radiation level of the gas in the tunnel were able to always observed by connecting radiation safety system and accelerator control system. The dump temperature was included in the MPS. We also developed new interlock system that can stop the beam immediately when the beam current exceed the limit.

Journal Articles

Construction of control system for J-PARC RF ion source & RFQ III test stand

Fukuta, Shimpei; Sawabe, Yuki; Suzuki, Takahiro*; Ishiyama, Tatsuya*; Kawase, Masato*; Ito, Yuichi; Kato, Yuko; Yoshii, Akinobu; Kikuzawa, Nobuhiro; Ouchi, Nobuo

Proceedings of 10th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1122 - 1125, 2014/06

The installation of Cs-seeded RF-driven H$$^{-}$$ ion source (RF ion source) to J-PARC LINAC is scheduled in 2014. Similarly the replacement of RFQ III from RFQ is scheduled in 2014. The test stand of the cooperation of RF ion source & RFQ III is being made in the J-PARC LINAC building for the beam acceleration examination now. The J-PARC control group designed test stand control system by thinking that test stand control system had to be equal to J-PARC accelerator control system. Specifically, Introduction of MPS for protect an apparatus. Implementation of EPICS environment for remotely controlling the equipment. It is construction of the timing system for sending a timing signal to each accelerator component device. This report describes construction of the control system in a test stand.

Journal Articles

Development of J-PARC LINAC/RCS MPS Sub System, 2

Suzuki, Takahiro; Ito, Yuichi; Ishiyama, Tatsuya; Maruta, Tomofumi; Kato, Yuko; Kawase, Masato; Fukuta, Shimpei; Sawabe, Yuki*; Kikuzawa, Nobuhiro

Proceedings of 8th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.527 - 529, 2011/08

no abstracts in English

JAEA Reports

Formulation of EPICS record naming conventions in J-PARC Linac and RCS; Build process of unique and standardized name

Fukuta, Shimpei; Watanabe, Kazuhiko*; Sakaki, Hironao; Takahashi, Hiroki; Kawase, Masato; Kikuzawa, Nobuhiro

JAEA-Testing 2010-004, 34 Pages, 2011/02

JAEA-Testing-2010-004.pdf:0.81MB

J-PARC accelerator devices are controlled by the use of the software called EPICS. The unique name called an EPICS record is given to a control signal and data acquisition, Accelerator device control are achieved using the EPICS record. The requirement for the EPICS record name is 2 points; (1) no overlap of the EPICS record name, (2) the control contents can be easily imagined from the EPICS record name. To manage the EPICS record using relational database for the information management of the accelerator device in J-PARC, it is required to compose that a mechanical process can be performed easily. It was necessary to standardize the EPICS record name and the EPICS record structure to achieve these requirements. Therefore, we have formulated a guideline called "EPICS record naming conventions" to decide to an EPICS record name uniquely and standardization.

Journal Articles

Development of control system for J-PARC LINAC ACS section

Sawabe, Yuki*; Suzuki, Takahiro; Ishiyama, Tatsuya; Fukuta, Shimpei; Kikuzawa, Nobuhiro

Proceedings of 7th Annual Meeting of Particle Accelerator Society of Japan (DVD-ROM), p.680 - 682, 2010/08

The output energy of the J-PARC proton LINAC will be upgraded from 181 to 400 MeV in the next two years by adding ACS modules. The present status of upgrade of the control system for the ACS section will be presented in this paper.

Journal Articles

Development of fast beam-stop system using RF chopper

Kikuzawa, Nobuhiro; Suzuki, Takahiro; Ito, Yuichi; Miura, Akihiko; Fukuta, Shimpei; Ikegami, Masanori*; Sako, Hiroyuki; Kobayashi, Tetsuya; Suzuki, Hiroyuki; Hasegawa, Kazuo

Proceedings of 7th Annual Meeting of Particle Accelerator Society of Japan (DVD-ROM), p.677 - 679, 2010/08

To avoid heat damage and radioactivation by beam loss of the J-PARC accelerator, Machine Protection System (MPS) has been developed. Actually, high responsibility and high reliability have been achieved in J-PARC. Beam-stop method in addition to a way of RFQ OFF has been requested in order to avoid damage to the RFQ. Therefore, we have been developing a fast beam-stop system by using a RF chopper. The fast beam-stop system, including beam test, is described in this paper.

Journal Articles

Performance of the control system for the J-PARC LINAC

Yoshikawa, Hiroshi; Suzuki, Takahiro; Sakaki, Hironao; Ito, Yuichi; Kato, Yuko; Kawase, Masato; Sako, Hiroyuki; Shen, G.; Takahashi, Hiroki; Fukuta, Shimpei; et al.

Proceedings of 24th International Linear Accelerator Conference (LINAC 2008) (CD-ROM), p.52 - 54, 2009/00

LINAC of J-PARC began to operate in November, 2006, and a achieved an initial performance in January, 2007. Afterwards, the beam supply to RCS begins, and it is operating extremely with stability up to now. Here, the evaluation for comparison of the design and realities of architecture and performance of the LINAC control system are shown. Especially, the conceptual idea of function arrangement in the hierarchy of the control system architecture is shown. Now, the LINAC control system is in the second phase for the high power beam and reducing the beam loss, and the analysis of the system response identification for the high precision beam control is started.

Journal Articles

Development of J-PARC linac/RCS MPS sub system

Suzuki, Takahiro; Yoshikawa, Hiroshi; Sakaki, Hironao; Takahashi, Hiroki; Ito, Yuichi; Kato, Yuko; Kawase, Masato; Ishiyama, Tatsuya; Fukuta, Shimpei*; Watanabe, Kazuhiko*

Proceedings of 5th Annual Meeting of Particle Accelerator Society of Japan and 33rd Linear Accelerator Meeting in Japan (CD-ROM), p.84 - 86, 2008/00

no abstracts in English

Journal Articles

Current status of the control system for J-PARC accelerator complex

Yoshikawa, Hiroshi; Sakaki, Hironao; Sako, Hiroyuki; Takahashi, Hiroki; Shen, G.; Kato, Yuko; Ito, Yuichi; Ikeda, Hiroshi*; Ishiyama, Tatsuya*; Tsuchiya, Hitoshi*; et al.

Proceedings of International Conference on Accelerator and Large Experimental Physics Control Systems (ICALEPCS '07) (CD-ROM), p.62 - 64, 2007/10

J-PARC is a large scale facility of the proton accelerators for the multi-purpose of scientific researches in Japan. This facility consists of three accelerators and three experimental stations. Now, J-PARC is under construction, and LINAC is operated for one year, 3GeV synchrotron has just started the commissioning in this October the 1st. The completion of this facility will be next summer. The control system of accelerators established fundamental performance for the initial commissioning. The most important requirement to the control system of this facility is to minimize the activation of accelerator devices. In this paper, we show that the performances of each layer of this control system have been achieved in the initial stage.

13 (Records 1-13 displayed on this page)
  • 1