Refine your search:     
Report No.
Search Results: Records 1-20 displayed on this page of 87

Presentation/Publication Type

Initialising ...


Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...


Initialising ...


Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Practical effects of pressure-transmitting media on neutron diffraction experiments using Paris-Edinburgh presses

Hattori, Takanori; Sano, Asami; Machida, Shinichi*; Ouchi, Keiichi*; Kira, Hiroshi*; Abe, Jun*; Funakoshi, Kenichi*

High Pressure Research, 40(3), p.325 - 338, 2020/09

 Times Cited Count:0 Percentile:100(Physics, Multidisciplinary)

To understand the practical effects of pressure-transmitting media (PTM) on neutron diffraction using Paris-Edinburgh presses, diffraction patterns of MgO were collected to approximately 20 GPa using PTMs of Pb, AgCl, 4:1 methano-ethanol (ME) mixture with and without heating, N$$_2$$, and Ar. Hydrostaticity in the sample chamber estimated from the MgO 220 peak width improves in the order of Pb, AgCl, Ar, ME mixture, N$$_2$$, and the heated ME mixture. Unlike previous results using a diamond anvil cell, the unheated ME mixture is superior to Ar even after freezing, probably due to the cup on the anvil face. Considering these results and the sizable coherent scattering of Ne, which would show good hydrostaticity, we conclude that the ME mixture (preferably the heated one) is the best PTM in neutron experiments up to 20 GPa, while Ar can be substituted when a sample is reactive to alcohols.

Journal Articles

Neutron diffraction study on the deuterium composition of nickel deuteride at high temperatures and high pressures

Saito, Hiroyuki*; Machida, Akihiko*; Hattori, Takanori; Sano, Asami; Funakoshi, Kenichi*; Sato, Toyoto*; Orimo, Shinichi*; Aoki, Katsutoshi*

Physica B; Physics of Condensed Matter, 587, p.412153_1 - 412153_6, 2020/06

 Times Cited Count:0 Percentile:100(Physics, Condensed Matter)

The site occupancy of deuterium (D) atoms in face-centered-cubic nickel (fcc Ni) was measured along a cooling path from 1073 to 300 K at an initial pressure of 3.36 GPa via in situ neutron powder diffraction. Deuterium atoms predominantly occupy the octahedral (O) sites and slightly occupy the tetrahedral (T) sites of the fcc metal lattice. The O-site occupancy increases from 0.4 to 0.85 as the temperature is lowered from 1073 to 300 K. Meanwhile, the T-site occupancy remains c.a. 0.02. The temperature-independent behavior of the T-site occupancy is unusual, and its process is not yet understood. From the linear relation between the expanded lattice volume and D content, a D-induced volume expansion of 2.09(13) ${AA $^{3}$/D}$ atom was obtained. This value is in agreement with the values of 2.14-2.2 ${AA $^{3}$/D}$ atom previously reported for Ni and Ni$$_{0.8}$$ Fe$$_{0.2}$$ alloy.

Journal Articles

Crystal and magnetic structures of double hexagonal close-packed iron deuteride

Saito, Hiroyuki*; Machida, Akihiko*; Iizuka, Riko*; Hattori, Takanori; Sano, Asami; Funakoshi, Kenichi*; Sato, Toyoto*; Orimo, Shinichi*; Aoki, Katsutoshi*

Scientific Reports (Internet), 10, p.9934_1 - 9934_8, 2020/06

 Times Cited Count:0 Percentile:100(Multidisciplinary Sciences)

Neutron powder diffraction profiles were collected for iron deuteride (FeDx) while the temperature decreased from 1023 to 300 K for a pressure range of 4-6 GPa. The $$varepsilon$$' deuteride with a double hexagonal close-packed (dhcp) structure, which coexisted with other stable or metastable deutrides at each temperature and pressure condition, formed solid solutions with a composition of FeD$$_{0.68(1)}$$ at 673 K and 6.1 GPa and FeD$$_{0.74(1)}$$ at 603 K and 4.8 GPa. Upon stepwise cooling to 300 K, the D-content x increased to a stoichiometric value of 1.0 to form monodeuteride FeD$$_{1.0}$$. In the dhcp FeD$$_{1.0}$$ at 300 K and 4.2 GPa, dissolved D atoms fully occupied the octahedral interstitial sites, slightly displaced from the octahedral centers in the dhcp metal lattice, and the dhcp sequence of close-packed Fe planes contained hcp-stacking faults at 12%. Magnetic moments with 2.11 $$pm$$ 0.06 B/Fe-atom aligned ferromagnetically in parallel on the Fe planes.

Journal Articles

X-ray and neutron study on the structure of hydrous SiO$$_{2}$$ glass up to 10 GPa

Urakawa, Satoru*; Inoue, Toru*; Hattori, Takanori; Sano, Asami; Kohara, Shinji*; Wakabayashi, Daisuke*; Sato, Tomoko*; Funamori, Nobumasa*; Funakoshi, Kenichi*

Minerals (Internet), 10(1), p.84_1 - 84_13, 2020/01

 Times Cited Count:1 Percentile:23.87(Mineralogy)

The structure of hydrous amorphous SiO$$_{2}$$ is fundamental to investigate the effects of water on the physicochemical properties of oxide glasses and magma. The hydrous SiO$$_{2}$$ glass with 13 wt.% D$$_{2}$$O was synthesized under high-pressure and high-temperature conditions and its structure was investigated by small angle X-ray scattering, X-ray diffraction, and neutron diffraction experiments at pressures of up to 10 GPa and room temperature. This hydrous glass is separated into a SiO$$_{2}$$ rich major phase and a D$$_{2}$$O rich minor phase. Medium-range order of the hydrous glass shrinks compared to the anhydrous SiO$$_{2}$$ glass due to disruption of SiO$$_{4}$$ linkage by formation of Si-OD deuterioxyl, while the pressure response is similar. Most of D$$_{2}$$O molecules are in the small domains and hardly penetrate into SiO$$_{2}$$ major phase.

Journal Articles

Hexagonal close-packed iron hydride behind the conventional phase diagram

Machida, Akihiko*; Saito, Hiroyuki*; Hattori, Takanori; Sano, Asami; Funakoshi, Kenichi*; Sato, Toyoto*; Orimo, Shinichi*; Aoki, Katsutoshi*

Scientific Reports (Internet), 9(1), p.12290_1 - 12290_9, 2019/08

 Times Cited Count:3 Percentile:34.9(Multidisciplinary Sciences)

Hexagonal close-packed iron hydride, hcp FeHx, is absent from the conventional phase diagram of the Fe-H system, although hcp metallic Fe exists stably over extensive temperature ($$T$$) and pressure ($$P$$) conditions, including those corresponding to the Earth's inner core. ${{it In situ}}$ X-ray and neutron diffraction measurements at temperatures ranging from 298 to 1073 K and H pressures ranging from 4 to 7 GPa revealed that the hcp hydride was formed for FeH$$_{x}$$ compositions when $$x < 0.6$$. Hydrogen atoms occupied the octahedral interstitial sites of the host metal lattice both partially and randomly. The hcp hydride exhibited a H-induced volume expansion of 2.48(5) $AA $^{3}$$/H-atom, which was larger than that of the face-centered cubic (fcc) hydride. The hcp hydride showed an increase in $$x$$ with $$T$$, whereas the fcc hydride showed a corresponding decrease. The present study provides guidance for further investigations of the Fe-H system over an extensive $$x$$-$$T$$-$$P$$ region.

Journal Articles

Development of a technique for high pressure neutron diffraction at 40 GPa with a Paris-Edinburgh press

Hattori, Takanori; Sano, Asami; Machida, Shinichi*; Abe, Jun*; Funakoshi, Kenichi*; Arima, Hiroshi*; Okazaki, Nobuo*

High Pressure Research, 39(3), p.417 - 425, 2019/06

 Times Cited Count:6 Percentile:16.18(Physics, Multidisciplinary)

We have developed a technique for neutron diffraction experiments at pressures up to 40 GPa using a Paris-Edinburgh press at the PLANET beamline in J-PARC. To increase the maximum accessible pressure, the diameter of the dimple for sample chamber at the top of the sintered diamond anvils is sequentially reduced from 4.0 mm to 1.0 mm. As a result, the maximum pressure increased and finally reached 40 GPa. By combining this technique with the beam optics which defines the gauge volume, diffraction patterns sufficient for full-structure refinements are obtainable at such pressures.

Journal Articles

What can we do with the high-pressure neutron diffractometer PLANET?

Hattori, Takanori; Sano, Asami; Machida, Shinichi*; Abe, Jun*; Funakoshi, Kenichi*; Okazaki, Nobuo*

Nippon Kessho Gakkai-Shi, 59(6), p.301 - 308, 2017/12

PLANET is a neutron beamline dedicated to high-pressure experiments. Combining the intense neutron source of J-PARC and high-pressure devices designed for time-of-flight powder neutron diffraction enables precise structure analysis of crystal, liquid and amorphous solids over wide pressure and temperature region of 0-20 GPa and 77-2000K. This beamline is effective for various studies in geophysics, planetary science, physics and chemistry. This paper overviews the beamline and introduces recent results obtained at PLANET.

Journal Articles

Materials and Life Science Experimental Facility (MLF) at the Japan Proton Accelerator Research Complex, 2; Neutron scattering instruments

Nakajima, Kenji; Kawakita, Yukinobu; Ito, Shinichi*; Abe, Jun*; Aizawa, Kazuya; Aoki, Hiroyuki; Endo, Hitoshi*; Fujita, Masaki*; Funakoshi, Kenichi*; Gong, W.*; et al.

Quantum Beam Science (Internet), 1(3), p.9_1 - 9_59, 2017/12

The neutron instruments suite, installed at the spallation neutron source of the Materials and Life Science Experimental Facility (MLF) at the Japan Proton Accelerator Research Complex (J-PARC), is reviewed. MLF has 23 neutron beam ports and 21 instruments are in operation for user programs or are under commissioning. A unique and challenging instrumental suite in MLF has been realized via combination of a high-performance neutron source, optimized for neutron scattering, and unique instruments using cutting-edge technologies. All instruments are/will serve in world-leading investigations in a broad range of fields, from fundamental physics to industrial applications. In this review, overviews, characteristic features, and typical applications of the individual instruments are mentioned.

Journal Articles

Hydrostatic compression behavior and high-pressure stabilized $$beta$$-phase in $$gamma$$-based titanium aluminide intermetallics

Liss, K.-D.*; Funakoshi, Kenichi*; Dippenaar, R. J.*; Higo, Yuji*; Shiro, Ayumi*; Reid, M.*; Suzuki, Hiroshi; Shobu, Takahisa; Akita, Koichi

Metals, 6(7), p.165_1 - 165_22, 2016/07

 Times Cited Count:14 Percentile:25.3(Materials Science, Multidisciplinary)

Titanium aluminides find application in modern light-weight, high-temperature turbines, such as aircraft engines, but suffer from poor plasticity during manufacturing and processing. Huge forging presses enable materials processing in the 10 GPa range and hence, it is necessary to investigate the phase-diagrams of candidate materials under these extreme conditions. Here we report on an in-situ synchrotron X-ray diffraction study in a large-volume-press of a modern ($$alpha_{2}$$ + $$gamma$$) two-phase material, Ti-45Al-7.5Nb-0.25C, under pressures up to 9.6 GPa and temperatures up to 1686 K. At room temperature, the volume response to pressure is accommodated by the transformation $$gamma$$ $$rightarrow$$ $$alpha_{2}$$ rather than volumetric strain, expressed by apparently high bulk moduli of both constituent phases. Crystallographic aspects, specifically lattice strain and atomic order are discussed in detail. It is interesting to note that this transformation takes place despite an increase in atomic volume, which is due to the high ordering energy of $$gamma$$. Upon heating under high pressure, both the eutectoid and $$gamma$$-solvus transition temperatures are elevated, and a third, cubic $$beta$$-phase is stabilized above 1350 K. Earlier research has shown that this $$beta$$-phase is very ductile during plastic deformation, essential in near-conventional forging processes. Here, we were able to identify an ideal processing window for near-conventional forging, while the presence of the detrimental $$beta$$-phase is not present under operating conditions. Novel processing routes can be defined from these findings.

Journal Articles

Overview of high-pressure neutron beamline, PLANET, and practical aspects of the experiments

Hattori, Takanori; Sano, Asami; Arima, Hiroshi*; Funakoshi, Kenichi*; Abe, Jun*; Machida, Shinichi*; Okazaki, Nobuo*; Ouchi, Keiichi*; Inamura, Yasuhiro

Koatsuryoku No Kagaku To Gijutsu, 26(2), p.89 - 98, 2016/06

PLANET is a high-pressure neutron beamline constructed at pulsed-neutron source in Materials and Life Science Facility (MLF) in J-PARC. The six-axis multi-anvil press designed for time of flight (TOF) neutron diffraction experiments enables routine data collection at high pressures and high temperatures up to 10 GPa and 2000 K, respectively. To obtain clean data, the beamline is equipped with the incident slits and receiving collimators that eliminate parasitic scattering from the high-pressure cell. The high performance of the diffractometer for the resolution ($$Delta d/d$$ $$sim$$ 0.6%) and the accessible d-spacing range (0.2 - 8.4 ${AA}$) together with low-parasitic scattering characteristics enables precise structure determination of crystals and liquids under high pressure and temperature conditions.

Journal Articles

Ponded melt at the boundary between the lithosphere and asthenosphere

Sakamaki, Tatsuya*; Suzuki, Akio*; Otani, Eiji*; Terasaki, Hidenori*; Urakawa, Satoru*; Katayama, Yoshinori; Funakoshi, Kenichi*; Wang, Y.*; Hernlund, J. W.*; Ballmer, M. D.*

Nature Geoscience, 6(12), p.1041 - 1044, 2013/12

 Times Cited Count:91 Percentile:2.67(Geosciences, Multidisciplinary)

The bounday between Earth's rigid lighosphere and the underlying, ductile ashenosphere is marked by a distinct siseismic discontinuity. We measure the density, viscosity and structure of basaltic magmas using high-pressure and high-temperature experiments and in situ X-ray analysis under pressure of up to 5.5 GPa. We find that the magmas rapidly become denser with increasing presure and show a viscosity minimum near 4 GPa. Magma mobility determined by the density and viscosity data exhibits a peak at pressures corresponding to depths of 120-150 km, within the asthenosphere. The diminishing mobility of magma in Earth's asthenosphere as the mlets ascend could lead to excessive melt accumulation at depths of 80-100 km, at the lithosphere-asthenosphere boundary. It is concluded that the observed seismic discontinuity at the lithosphere-asthenosphere boundary records this accumulation of melt.

Journal Articles

Structural transformations and anomalous viscosity in the B$$_{2}$$O$$_{3}$$ melt under high pressure

Brazhkin, V. V.*; Farnan, I.*; Funakoshi, Kenichi*; Kanzaki, Masami*; Katayama, Yoshinori; Lyapin, A. G.*; Saito, Hiroyuki

Physical Review Letters, 105(11), p.115701_1 - 115701_4, 2010/09

 Times Cited Count:46 Percentile:12.35(Physics, Multidisciplinary)

Liquid B$$_{2}$$O$$_{3}$$ represents an archetypical oxide melt with the cation coordination number 3 and unusual structural units - planar boroxol rings. It features super-high viscosity at melting temperature. The results of the ${it in-situ}$ X-ray diffraction study and ${it in-situ}$ viscosity measurements of the B$$_{2}$$O$$_{3}$$ liquid under high pressure up to 8 GPa are presented. Additionally, the NMR study of B$$_{2}$$O$$_{3}$$ glasses quenched from the melt at different pressures has been carried out. The number of the boroxol rings in the melt rapidly decreases with pressure. The viscosity of the B$$_{2}$$O$$_{3}$$ melt along the melting curve drops by 4 orders of magnitude as the pressure increases up to 5.5 GPa and remains unchanged on further pressure increase.

Journal Articles

Structure of liquid water under high pressure up to 17 GPa

Katayama, Yoshinori; Hattori, Takanori; Saito, Hiroyuki; Ikeda, Takashi; Aoki, Katsutoshi; Fukui, Hiroshi*; Funakoshi, Kenichi*

Physical Review B, 81(1), p.014109_1 - 014109_6, 2010/01

 Times Cited Count:57 Percentile:9.97(Materials Science, Multidisciplinary)

The structure of liquid water was studied along the melting curve up to 17.1 GPa and 850 K by in situ X-ray diffraction. At low pressures, the local structure changed toward a simple liquid-like structure through an increase in the coordination number of water molecules. Once densely packed structure of water molecules was achieved around 4 GPa, the volume was reduced through the decrease of the intermolecular distance on further compression. Classical molecular dynamics simulations well reproduced the experimental results although the degree of agreement depended on pressure. Limitations of the pair potential model were discussed.

Journal Articles

Polyamorphism in tin tetraiodide

Fuchizaki, Kazuhiro*; Hase, Takaki*; Yamada, Akihiro*; Hamaya, Nozomu*; Katayama, Yoshinori; Funakoshi, Kenichi*

Journal of Chemical Physics, 130(12), p.121101_1 - 121101_4, 2009/03

 Times Cited Count:19 Percentile:39.18(Chemistry, Physical)

In situ synchrotron X-ray diffraction measurements on tin tetraiodide, which consists of SnI$$_{4}$$ tetrahedral molecules at ambient pressure, have been performed. It was established that the liquid forms existing above and below 1.5 GPa, where the slope of the melting curve of the solid phase changes abruptly, have different structures. This discovery offers evidence of thermodynamically stable polyamorphism in general compounds as well as in elements. A possible phase diagram that includes the two amorphous states already found is proposed based on the pseudobinary regular solution model. The vertex-to-face orientation between the nearest molecules plays a key role in the transition from the low-pressure to the high-pressure liquid phase.

Journal Articles

Viscosity behavior spanning four orders of magnitude in As-S melts under high pressure

Brazhkin, V. V.*; Kanzaki, Masami*; Funakoshi, Kenichi*; Katayama, Yoshinori

Physical Review Letters, 102(11), p.115901_1 - 115901_4, 2009/03

 Times Cited Count:18 Percentile:28.33(Physics, Multidisciplinary)

As-S liquid undergoes structural transformation form a molecular liquid into a polymerized one, then into a metallic one. We have measured the viscosity of the As-S liquid under high pressures and found large viscosity variations by 4-5 orders of magnitude. The viscosity values of the As-s liquids are moderate in the molecular state, very high in the covalent state, and low in the metallic state. From these results, it is possible to predict the viscosity behavior in other melts under pressure. The possibility of varying the viscosity value of the melts under pressure by many orders of magnitude is of great importance for materials science and earth science.

Journal Articles

Nonviscous metallic liquid Se

Brazhkin, V. V.*; Funakoshi, Kenichi*; Kanzaki, Masami*; Katayama, Yoshinori

Physical Review Letters, 99(24), p.245901_1 - 245901_4, 2007/12

 Times Cited Count:17 Percentile:31.58(Physics, Multidisciplinary)

Viscosity is one of the fundamental physical properties of liquids; for different melts it varies in an extremely wide range. Selenium is among the first elementary substances to have manifested, at compression, a phase transformation in the liquid state accompanied by melt metallization. Direct measurements by means of a real-time radiography show that the viscosity of liquid Se under pressure drops by 500 times to a very low level of 8 mPa s. This is the first case of viscosity measurements being performed both for a relatively viscous semiconducting state and a low-viscous metallic state of the same liquid substance. The viscosity of the Se melt strongly decreases with pressure along the melting curve in a semiconducting state and experiences a further significant drop at melt metallization. A similar phenomenon is expected to be observed in many chalcohenide, halogenide and oxide melts.

Journal Articles

Viscosity and density measurements of melts and glasses at high pressure and temperature by using the multi-anvil apparatus and synchrotron X-ray radiation

Otani, Eiji*; Suzuki, Akio*; Ando, Ryota*; Urakawa, Satoru*; Funakoshi, Kenichi*; Katayama, Yoshinori

Advances in High-Pressure Technology for Geophysical Applications, p.195 - 209, 2005/09

This paper summarizes the techniques for the viscosity and density measurements of silicate melt and glasses at high pressure and temperature by using the X-ray radiography and absorption techniques in the third generation synchrotron radiation facility, SPring-8, Japan. The falling sphere method using in situ X-ray radiography makes it possible to measure the viscosity of silicate melts to the pressures above 6 GPa at high temperature. We summarize the details of the experimental technique of the viscosity measurement, and the results of the measurements of some silicate melts such as the albite and diopside-jadeite systems. X-ray absorption method is applied to measure the density of the silicate glasses such as the basaltic glass and iron sodium disilicate glass up to 5 GPa at high temperature. A diamond capsule, which is not reactive with the glass, is used for the density measurement of the glasses. The present density measurement of the glasses indicates that this method is useful for measurement of the density of silicate melts at high pressure and temperature.

Journal Articles

Computer control and measurement systems for "SPEED-1500", a Kawai-type multi-anvil press for ${it in situ}$ X-ray observations with synchrotron radiation

Kaneko, Hiroshi*; Funakoshi, Kenichi*; Katsura, Tomoo*; Utsumi, Wataru

Koatsuryoku No Kagaku To Gijutsu, 15(1), p.9 - 14, 2005/01

This article addresses the computer control and data analysis system in "SPEED-1500", a Kawai-type multi-anvil press installed on beamline BL04B1 at the SPring-8, which is for ${it in situ}$ X-ray diffraction and radiography experiments by means of synchrotron radiation. The system consists of several different computer applications, which are for pressure and temperature control, stage and goniometer control, and data-collection and its analysis. These programs have been used by many public users and are still improving.

Journal Articles

Transformations in the intermediate-range structure of SiO$$_{2}$$ glass under high pressure and temperature

Inamura, Yasuhiro*; Katayama, Yoshinori; Utsumi, Wataru; Funakoshi, Kenichi*

Physical Review Letters, 93(1), p.015501_1 - 015501_4, 2004/07

 Times Cited Count:99 Percentile:6.73(Physics, Multidisciplinary)

The temperature dependence of the X-ray structure factor for SiO$$_{2}$$ glass was measured at several pressures up to 19.2 GPa. The position of the first sharp diffraction peak moved to a higher momentum transfer as the temperature increased in a specific pressure-temperature range. The intermediate range structure was thermally relaxed to a denser one. Around 7 GPa, the temperature-induced shift saturated and the crystallization temperature drastically increased. These results support the existence of a relatively stable high-pressure form of SiO$$_{2}$$ glass. A sudden transformation was not observed.

Journal Articles

Phase relationships and equations of state for FeS at high pressures and temperatures and implications for the internal structure of Mars

Urakawa, Satoru*; Someya, Keiko*; Terasaki, Hidenori*; Katsura, Tomoo*; Yokoshi, Sho*; Funakoshi, Kenichi*; Utsumi, Wataru; Katayama, Yoshinori; Sueda, Yuichiro*; Irifune, Tetsuo*

Physics of the Earth and Planetary Interiors, 143-144, p.469 - 479, 2004/06

 Times Cited Count:50 Percentile:28.27(Geochemistry & Geophysics)

no abstracts in English

87 (Records 1-20 displayed on this page)