Refine your search:     
Report No.
 - 
Search Results: Records 1-16 displayed on this page of 16
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Radiation monitoring using manned helicopter around the Nuclear Power Station in the fiscal year 2020 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Ishizaki, Azusa; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; Sato, Kazuhiko*; Haginoya, Masashi*; Matsunaga, Yuki*; Kikuchi, Hikaru*; et al.

JAEA-Technology 2021-029, 132 Pages, 2022/02

JAEA-Technology-2021-029.pdf:24.58MB

By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company (TEPCO), caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011, a large amount of radioactive material was released from the FDNPS. After the nuclear disaster, airborne radiation monitoring using manned helicopter has been conducted around FDNPS. The results of the airborne radiation monitoring and the evaluation for temporal change of dose rate in the fiscal 2020 were summarized in this report. Analysis considering topographical effects was applied to the result of the airborne monitoring to improve the accuracy of conventional method. In addition, technique for discriminating gamma rays from the ground and those from the airborne Rn-progenies was also utilized to evaluate their effect on airborne radiation monitoring.

JAEA Reports

Background radiation monitoring using manned helicopter for application of technique of nuclear emergency response in the fiscal year 2020 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Sasaki, Miyuki; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; Sato, Kazuhiko*; Haginoya, Masashi*; Matsunaga, Yuki*; Kikuchi, Hikaru*; et al.

JAEA-Technology 2021-020, 138 Pages, 2021/11

JAEA-Technology-2021-020.pdf:17.11MB

A large amount of radioactive material was released by the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company, caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011. After the nuclear disaster, airborne radiation monitoring via manned helicopter has been utilized to grasp rapidly and widely the distribution of the radioactive materials surrounding FDNPS. We prepare the data of background radiation dose, geomorphic characteristics and the controlled airspace surrounding nuclear facilities of the whole country in order to make effective use of the monitoring technique as a way of emergency radiation monitoring and supply the results during an accident of a facility. This report is summarized that the knowledge as noted above achieved by the aerial radiation monitoring around Tsuruga and Mihama nuclear power station, research reactors in Kindai University Atomic Energy Research Institute and Institute for Integrated Radiation and Nuclear Science, Kyoto University. In addition, examination's progress aimed at introduction of airborne radiation monitoring via unmanned plane during nuclear disaster and the technical issues are summarized in this report.

JAEA Reports

Background radiation monitoring using manned helicopter for application of technique of nuclear emergency response in the fiscal year 2019 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; Sato, Kazuhiko*; Haginoya, Masashi*; Matsunaga, Yuki*; Kikuchi, Hikaru*; Ishizaki, Azusa; et al.

JAEA-Technology 2020-019, 128 Pages, 2021/02

JAEA-Technology-2020-019.pdf:15.75MB

A large amount of radioactive material was released by the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company, caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011. After the nuclear disaster, airborne radiation monitoring using manned helicopter has been utilized to grasp rapidly and widely the distribution of the radioactive materials around FDNPS. We prepare the data of background radiation dose, geomorphic characteristics and the controlled airspace around nuclear facilities of the whole country in order to make effective use of the monitoring technique as a way of emergency radiation monitoring and supply the results during accidents of the facilities. Furthermore, the airborne radiation monitoring has been conducted in Integrated Nuclear Emergency Response Drill to increase effectiveness of the monitoring. This report is summarized that the knowledge as noted above achieved by the aerial radiation monitoring around Higashidori nuclear power station, the nuclear fuel reprocessing plant in Rokkasho village and Shika nuclear power station, the full details of the aerial radiation monitoring in Integrated Nuclear Emergency Response Drill in the fiscal 2019. In addition, examination's progress aimed at introduction of airborne radiation monitoring using unmanned helicopter during nuclear disaster and the technical issues are summarized in this report.

JAEA Reports

Radiation monitoring using manned helicopter around the Nuclear Power Station in the fiscal year 2019 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Ishizaki, Azusa; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; Sato, Kazuhiko*; Haginoya, Masashi*; Matsunaga, Yuki*; Kikuchi, Hikaru*; et al.

JAEA-Technology 2020-018, 121 Pages, 2021/02

JAEA-Technology-2020-018.pdf:15.15MB

By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company (TEPCO), caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011, a large amount of radioactive material was released from the FDNPS. After the nuclear disaster, airborne radiation monitoring using manned helicopter has been conducted around FDNPS. The results in the fiscal 2019 were summarized in this report. Analysis taken topographical effects into consideration was applied to the result of airborne monitoring to improve the precision of conventional method. In addition, discrimination method of gamma rays from Rn-progenies was also utilized to evaluate their effect on aerial radiation monitoring.

JAEA Reports

Background radiation monitoring using manned helicopter for application of technique of nuclear emergency response in the fiscal year 2018 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Komiya, Tomokazu; Iwai, Takeyuki*; Seguchi, Eisaku*; Matsunaga, Yuki*; Kawabata, Tomoki*; Haginoya, Masashi*; Hiraga, Shogo*; Sato, Kazuhiko*; et al.

JAEA-Technology 2019-017, 95 Pages, 2019/11

JAEA-Technology-2019-017.pdf:12.09MB

By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company (TEPCO), caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011, a large amount of radioactive material was released from the FDNPS. After the nuclear disaster, airborne radiation monitoring using manned helicopter was conducted around FDNPS. We have carried out the background radiation monitoring around the nuclear power stations of the whole country to apply the airborne radiation monitoring technique that has been cultivated in the aerial monitoring around FDNPS against nuclear emergency response. The results of monitoring around Shimane and Hamaoka Nuclear Power Stations in the fiscal 2018 were summarized in this report. In addition, technical issues were described.

JAEA Reports

Radiation monitoring using manned helicopter around the Nuclear Power Station in the fiscal year 2018 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Ishizaki, Azusa; Komiya, Tomokazu; Iwai, Takeyuki*; Seguchi, Eisaku*; Matsunaga, Yuki*; Kawabata, Tomoki*; Haginoya, Masashi*; Hiraga, Shogo*; et al.

JAEA-Technology 2019-016, 116 Pages, 2019/11

JAEA-Technology-2019-016.pdf:14.09MB

By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company (TEPCO), caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011, a large amount of radioactive material was released from the FDNPS. After the nuclear disaster, airborne radiation monitoring using manned helicopter has been conducted around FDNPS. The results in the fiscal 2018 were summarized in this report. Discrimination method of gamma rays from Rn-progenies was also utilized to evaluate their effect on aerial radiation monitoring. In addition, analysis taken topographical effects into consideration was applied to previous results of airborne monitoring to improve the precision of conventional method.

Journal Articles

Student and Young researcher's view of research on health physics and environment science

Miwa, Kazuji; Terasaka, Yuta; Ochi, Kotaro; Futemma, Akira; Sasaki, Miyuki; Hirouchi, Jun

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 61(9), p.687 - 691, 2019/09

This report summarizes the contents of the session of the Health Physics and Environment Science Division, which was held in Atomic Energy Society of Japan 2019 Spring Meeting. In this session, six students and young researchers who engaged in the field of nuclear energy and radiation gave a lecture about health physics and environmental science research through their expertise. After the all presentations end, we took discussion time about the issues and future development in this field with all attendees. In this report, we summarized each lecture outline and discussion contents.

Journal Articles

Investigation of removal factors of various materials inside houses after Nuclear Power Station Accident

Mori, Airi; Ishizaki, Azusa; Futemma, Akira; Tanabe, Tsutomu; Wada, Takao; Kato, Mitsugu; Munakata, Masahiro

Hoken Butsuri (Internet), 54(1), p.45 - 54, 2019/04

JAEA Reports

Photon transmittance data collection of building materials for evaluating radiation protection capability of buildings (Contract research)

Ishizaki, Azusa; Futemma, Akira; Takubo, Kazuya*; Nakanishi, Chika*; Munakata, Masahiro

JAEA-Data/Code 2018-022, 20 Pages, 2019/03

JAEA-Data-Code-2018-022.pdf:2.05MB

If a nuclear disaster occurs, we may evacuate indoor escape facilities and buildings such as houses as avoid extra exposure doses. In order to evaluate exposure doses, it is necessary to estimate shielding capabilities of the building materials constituting the sheltering facility. Therefore, photon irradiation tests with three kinds of photon energy were carried out for Japanese familiar building materials in Japan, and photon transmittance of each building material is acquired and summarized. As a result, it was found that the shielding capabilities of composite walls and roofs which are widely used in a tree structure and a steel structure were relatively low. And, difference of materials used for composite walls and roofs resulted in a difference in shielding capabilities. For example, in the case of composite walls, compared with the photon transmittance of wall with ceramic-based siding materials, those of wall with lightweight concrete were lower. Furthermore, photon transmittance was also measured for building materials with relatively low shielding performance added shielding materials as additional measures to enhance shielding capabilities.

JAEA Reports

Background radiation monitoring using manned helicopter for establishment of technique of nuclear emergency response in the fiscal year 2017 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Iwai, Takeyuki*; Seguchi, Eisaku; Matsunaga, Yuki*; Kawabata, Tomoki; Toyoda, Masayuki*; Tobita, Shinichiro*; Hiraga, Shogo*; Sato, Kazuhiko*; et al.

JAEA-Technology 2018-016, 98 Pages, 2019/02

JAEA-Technology-2018-016.pdf:18.64MB

By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company (TEPCO), caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011, a large amount of radioactive material was released from the NPS. After the nuclear disaster, airborne radiation monitoring using manned helicopter was conducted around FDNPS. We have carried out the background monitoring around the nuclear power stations of the whole country to apply the airborne radiation monitoring technique that has been cultivated in Fukushima against nuclear emergency response. The results of monitoring around Tomari, Kashiwazaki-Kariwa and Genkai Nuclear Power Station in the fiscal 2017 were summarized in this report. In addition, technical issues were described.

JAEA Reports

Radiation monitoring using manned helicopter around the Nuclear Power Station in the fiscal year 2017 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Ishizaki, Azusa; Iwai, Takeyuki*; Seguchi, Eisaku; Matsunaga, Yuki*; Kawabata, Tomoki; Toyoda, Masayuki*; Tobita, Shinichiro*; Hiraga, Shogo*; et al.

JAEA-Technology 2018-015, 120 Pages, 2019/02

JAEA-Technology-2018-015.pdf:15.01MB

By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company (TEPCO), caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011, a large amount of radioactive material was released from the NPS. After the nuclear disaster, airborne radiation monitoring using manned helicopter was conducted around FDNPS. The results in the fiscal 2017 were summarized in this report. In addition, we developed and systemized the discrimination technique of the Rn-progenies. The accuracy of aerial radiation monitoring was evaluated by taking into consideration GPS data error.

JAEA Reports

Development of measurement system of radioactive plume using unmanned airplane in the fiscal year 2016 (Contract research)

Ishizaki, Azusa; Sanada, Yukihisa; Nishizawa, Yukiyasu*; Futemma, Akira; Munakata, Masahiro

JAEA-Research 2017-012, 58 Pages, 2018/03

JAEA-Research-2017-012.pdf:9.36MB

At the accident of nuclear facilities, a prediction of behavior of released radioactive plume is indispensable for the decision of the refuge plan of inhabitants. Currently, prediction system which is based on atmospheric dispersion simulation has been implemented for as a tool of the atomic energy disaster prevention. However, direct measurement method of radioactive plume has not existed. In this study, some component technologies were developed for establishment of direct measurement methods of radioactive plume using unmanned aerial vehicle whose technological innovation is remarkable. In addition, algorism of making flight plan was developed based on prediction model of radioactive plume. This report summarized the outcome of the first year with plan of three years.

Oral presentation

Radiation monitoring using manned helicopter

Futemma, Akira; Kudo, Tamotsu

no journal, , 

no abstracts in English

Oral presentation

Aerial radiation monitoring via manned helicopter around nuclear facilities

Futemma, Akira; Kudo, Tamotsu

no journal, , 

During a nuclear emergency, aerial radiation monitoring (ARM) via manned helicopters could be utilized as a way of radiation measurement. Natural background radiation maps surrounding twelve nuclear facilities in Japan are developed by ARM to contribute to make an appropriate evaluation of the environmental radiological effect during a nuclear emergency.

Oral presentation

Radiation monitoring via manned helicopter

Futemma, Akira

no journal, , 

no abstracts in English

16 (Records 1-16 displayed on this page)
  • 1