Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 153

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Analysis work on flush-out of plutonium and uranium for decommissioning of main plant in Tokai Reprocessing Plant

Sato, Hinata; Mori, Amami; Kuno, Sorato; Horigome, Kazushi; Goto, Yuichi; Yamamoto, Masahiko; Taguchi, Shigeo

JAEA-Technology 2024-011, 56 Pages, 2024/10

JAEA-Technology-2024-011.pdf:2.5MB

Flush-out, which recovers remaining nuclear materials in the process and transfer it to a highly radioactive liquid waste storage tank, has been performed at main plant of Tokai Reprocessing Plant. The flush-out has been composed from three steps: first step is to remove of spent fuel sheared powder, second step is to collect plutonium solution stored in the process, and third step is to convert uranium solution into uranium trioxide powder. The first step of flush-out activity has been completed in 2022. Second and third steps of flush-out have been completed from March 2023 to February 2024. Process control analysis has been performed for operation of the facility, and material accountancy analysis has been performed to control the accountancy of nuclear materials. In addition, related analytical work such as pretreatment for transporting inspection samples for safeguards analysis laboratories in IAEA has been also performed. This report describes results of analytical work performed in collections of plutonium and uranium solutions in second and third steps of the flush-out, including calibration of analytical equipment, waste generation, and education and training of analytical operator.

Journal Articles

Analysis of nuclear materials in process solution during flush-out activities for decommissioning of reprocessing plant

Yamamoto, Masahiko; Horigome, Kazushi; Goto, Yuichi; Taguchi, Shigeo

Proceedings of International Conference on Nuclear Fuel Cycle (GLOBAL2024) (Internet), 4 Pages, 2024/10

Flush-out activities of Tokai Reprocessing Plant were completed in February, 2024. Since it contained remaining nuclear materials in main process of the facility, purpose of activities was to flush-out them and to rinse with nitric acid solution. This paper describes analysis of nuclear materials related to flush-out activities.

Journal Articles

Overview of development program for engineering scale extraction chromatography MA(III) recovery system

Watanabe, So; Takahatake, Yoko; Hasegawa, Kenta; Goto, Ichiro*; Miyazaki, Yasunori; Watanabe, Masayuki; Sano, Yuichi; Takeuchi, Masayuki

Mechanical Engineering Journal (Internet), 11(2), p.23-00461_1 - 23-00461_10, 2024/04

Journal Articles

Optimization in granulation conditions for adsorbent of extraction chromatography

Hasegawa, Kenta; Goto, Ichiro*; Miyazaki, Yasunori; Ambai, Hiromu; Watanabe, So; Watanabe, Masayuki; Sano, Yuichi; Takeuchi, Masayuki

Mechanical Engineering Journal (Internet), 11(2), p.23-00407_1 - 23-00407_8, 2024/04

Journal Articles

Hot cell equipment improvement effortsat Analytical Laboratory in Tokai Reprocessing Plant

Ishibashi, Atsushi; Masui, Kenji; Goto, Yuichi; Yamamoto, Masahiko; Taguchi, Shigeo; Ishikawa, Satoshi*; Ishikawa, Tomoya*

Nihon Hozen Gakkai Dai-19-Kai Gakujutsu Koenkai Yoshishu, p.18 - 21, 2023/08

An inner-box typed hot cell for analysis of highly radioactive samples has been operated for about 40 years in Tokai Reprocessing Plant since its installation in 1980. During the operation of analytical hot cell, improvement and upgrades including auxiliary equipment have been performed, in addition to keep the equipment in proper condition through periodic inspections and maintenance. This paper describes about these efforts for analytical hot cell and its results.

JAEA Reports

Analysis work report on removal of spent fuel sheared powder for decommissioning of main plant

Aoya, Juri; Mori, Amami; Sato, Hinata; Kono, Soma; Morokado, Shiori; Horigome, Kazushi; Goto, Yuichi; Yamamoto, Masahiko; Taguchi, Shigeo

JAEA-Technology 2023-008, 34 Pages, 2023/06

JAEA-Technology-2023-008.pdf:1.92MB

Flush-out, by which nuclear materials in the Tokai Reprocessing Plant process are recovered, has been started in June 2022 as the first step of decommissioning. Flush-out consists of removal of spent fuel sheared powder, plutonium solution, uranium solution, and the other nuclear materials. Removal of spent fuel sheared powder has been completed in September 2022. During removal of spent fuel sheared powder, uranium concentration, plutonium concentration, acid concentration, radioactivity concentration, and solution density have been analyzed for process control. For nuclear material accountancy, uranium concentration, plutonium concentration, isotope ratio, and solution density have been analyzed. Analysis work including sample pretreatment before transportation to IAEA analytical facility for safeguards, and the other operations related to Flush-out such as calibration of analytical instruments, education, and training of operators are reported.

Journal Articles

Development of engineering scale extraction chromatography separation system, 2; Spray drying granulation of silica support for adsorbent

Hasegawa, Kenta; Goto, Ichiro*; Miyazaki, Yasunori; Ambai, Hiromu; Watanabe, So; Watanabe, Masayuki; Sano, Yuichi; Takeuchi, Masayuki

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 5 Pages, 2023/05

Journal Articles

Development of engineering scale extraction chromatography separation system, 1; Overview of developments in engineering scale system

Watanabe, So; Takahatake, Yoko; Hasegawa, Kenta; Goto, Ichiro*; Miyazaki, Yasunori; Watanabe, Masayuki; Sano, Yuichi; Takeuchi, Masayuki

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 6 Pages, 2023/05

JAEA Reports

Completion of waste removal work from the hot cell of Operation Testing Laboratory in Tokai Reprocessing Plant

Goto, Yuichi; Suzuki, Yoshimasa; Horigome, Kazushi; Miyamoto, Toshihiko*; Usui, Masato*; Mori, Eito*; Kuno, Takehiko

JAEA-Technology 2022-005, 42 Pages, 2022/07

JAEA-Technology-2022-005.pdf:4.48MB

Radioactive wastes were generated and stored in the hot cell of Operation Testing Laboratory of Tokai Reprocessing Plant due to the experiments related to the reprocessing technology development from 1974 to 2014. Waste removal work was strengthened by the shift work in the past, however another wastes were generated by the equipment dismantling. From 2006, an improved waste removal method was established by using bag-out technique and wastes were taken from the glove-box connected to the hot cell. The removal period, estimated from the conventional method using Cask No. 10, was reduced from 14 to 5 years. From 2016, upgrade of worker's awareness including related departments was performed by various software and hardware improvements. Also, the worker's skills were improved and equipment in Cask No.10 was checked for preventive maintenance. The prevention measures for past troubles were discussed with Radiation Control Department. In addition, transportation schedule including safety operation with Transportation Department and Waste Receiving Department was optimized to maintain the waste removal cycle. The removal period was reduced from 5 to 3 years by the above efforts. Finally, the work was completed in March 2020.

Journal Articles

PSTEP: Project for solar-terrestrial environment prediction

Kusano, Kanya*; Ichimoto, Kiyoshi*; Ishii, Mamoru*; Miyoshi, Yoshizumi*; Yoden, Shigeo*; Akiyoshi, Hideharu*; Asai, Ayumi*; Ebihara, Yusuke*; Fujiwara, Hitoshi*; Goto, Tadanori*; et al.

Earth, Planets and Space (Internet), 73(1), p.159_1 - 159_29, 2021/12

 Times Cited Count:7 Percentile:44.49(Geosciences, Multidisciplinary)

The PSTEP is a nationwide research collaboration in Japan and was conducted from April 2015 to March 2020, supported by a Grant-in-Aid for Scientific Research on Innovative Areas from the Ministry of Education, Culture, Sports, Science and Technology of Japan. It has made a significant progress in space weather research and operational forecasts, publishing over 500 refereed journal papers and organizing four international symposiums, various workshops and seminars, and summer school for graduate students at Rikubetsu in 2017. This paper is a summary report of the PSTEP and describes the major research achievements it produced.

Journal Articles

Validation of ATDMs at early after the lF accident using air dose rate estimated by airborne concentration and surface deposition density

Moriguchi, Yuichi*; Sato, Yosuke*; Morino, Yu*; Goto, Daisuke*; Sekiyama, Tsuyoshi*; Terada, Hiroaki; Takigawa, Masayuki*; Tsuruta, Haruo*; Yamazawa, Hiromi*

KEK Proceedings 2021-2, p.21 - 27, 2021/12

no abstracts in English

Journal Articles

Improving the safety of the power supply system by separating the power supply circuit for control in the power distribution board in Tokai Reprocessing Plant

Goto, Sho; Aoki, Kenji; Morimoto, Kenji; Tsuboi, Masatoshi; Isozaki, Naohiko; Furukawa, Ryuichi; Kitagawa, Osamu; Fukaya, Yasuhiro*

Nihon Hozen Gakkai Dai-17-Kai Gakujutsu Koenkai Yoshishu, p.517 - 520, 2021/07

no abstracts in English

Journal Articles

Giant multiple caloric effects in charge transition ferrimagnet

Kosugi, Yoshihisa*; Goto, Matato*; Tan, Z.*; Kan, Daisuke*; Isobe, Masahiko*; Yoshii, Kenji; Mizumaki, Masaichiro*; Fujita, Asaya*; Takagi, Hidenori*; Shimakawa, Yuichi*

Scientific Reports (Internet), 11(1), p.12682_1 - 12682_8, 2021/06

 Times Cited Count:6 Percentile:40.97(Multidisciplinary Sciences)

Caloric effects of solids provide more efficient and environment-friendly innovative refrigeration systems compared to the widely-used conventional vapor compressive cooling systems. Exploring novel caloric materials is challenging but critically important in developing future technologies. Here we discovered that the quadruple perovskite structure ferrimagnet BiCu$$_{3}$$Cr$$_{4}$$O$$_{12}$$ shows a large multicaloric effect at the first-order charge transition occurred around 190 K. Large latent heat and the corresponding isothermal entropy changes 28.2 J K$$^{-1}$$ kg$$^{-1}$$ can be fully utilized by applying both magnetic fields (magnetocaloric effect) and pressure (barocaloric effect). Adiabatic temperature changes reach 3.9 K for the 50 kOe magnetic field and 4.8 K for the 4.9 kbar pressure, and thus highly efficient thermal controls are achieved by multiple ways.

Journal Articles

Behavior of light elements in iron-silicate-water-sulfur system during early Earth's evolution

Iizuka, Riko*; Goto, Hirotada*; Shito, Chikara*; Fukuyama, Ko*; Mori, Yuichiro*; Hattori, Takanori; Sano, Asami; Funakoshi, Kenichi*; Kagi, Hiroyuki*

Scientific Reports (Internet), 11(1), p.12632_1 - 12632_10, 2021/06

 Times Cited Count:4 Percentile:31.55(Multidisciplinary Sciences)

The Earth's core consist of Fe-Ni alloy with some light elements (H, C, O, Si, S etc.). Hydrogen (H) is the most abundant element in the universe and one of the promising candidates. In this study, we have investigated the effects of sulfur(S) on hydrogenation of iron-hydrous silicate system containing saturated water in the ideal composition of the primitive Earth. We observed a series of phase transitions of Fe, dehydration of the hydrous mineral, and formation of olivine and enstatite with increasing temperature. The FeS formed as the coexisting phase of Fe under high-pressure and temperature condition, but its unit cell volume did not increase, suggesting that FeS is hardly hydrogenated. Recovered samples exhibited that H and S can be incorporated into solid Fe, which lowers the melting temperature as Fe(H$$_{x}$$)-FeS system. No detection of other light elements (C, O, Si) in solid Fe suggests that they dissolve into molten iron hydride and/or FeS in the later process of Earth's core-mantle differentiation.

Journal Articles

Treatment technology of highly radioactive solid waste generated by experimental tests and sample analysis in reprocessing facilities

Goto, Yuichi; Inada, Satoshi; Kuno, Takehiko; Mori, Eito*

Nihon Hozen Gakkai Dai-16-Kai Gakujutsu Koenkai Yoshishu, p.221 - 224, 2019/07

Test equipment, containers, and analytical wastes, generated by experiments using spent fuel pieces in hot cell of Operation Testing Laboratory and by analysis of highly active liquid wastes in hot analytical cell line of Tokai Reprocessing Plant, are treated as highly radioactive solid wastes. These wastes are stored in specific shielded containers called waste cask and then transport to the storage facility. The treatment of these highly radioactive solid wastes have been carried out for 40 years with upgrading waste taking out system and transportation device. As a results, automation of several procedures have been achieved utilizing conventional equipment, and work efficiency and safety have been improved.

Journal Articles

Physical property evaluation of valve seal material at analytical radioactive liquid waste storage tanks in reprocessing facility

Goto, Yuichi; Yamamoto, Masahiko; Kuno, Takehiko; Inada, Satoshi

Nihon Hozen Gakkai Dai-15-Kai Gakujutsu Koenkai Yoshishu, p.489 - 492, 2018/07

Radioactive liquid waste from the Tokai Reprocessing Facility Analytical Laboratory is temporarily stored in intermediate waste storage tank by using receiving valves. Then, the liquid waste is transferred to liquid treatment facility by using liquid feed valves. The deterioration of the gasket part of these valves (leakage of waste liquid) was confirmed in 2004. Since then, the material of gaskets was changed from polyethylene to Teflon. In 2016, the gaskets were replaced by periodical update. Therefore, physical properties of used gaskets were investigated, and the relevance between radioactive level and degradation degree was evaluated.

Journal Articles

Replacement of the glove port equipped with glove box in Nuclear Fuel Reprocessing Facility

Horigome, Kazushi; Taguchi, Shigeo; Nishida, Naoki; Goto, Yuichi; Inada, Satoshi; Kuno, Takehiko

Nihon Hozen Gakkai Dai-14-Kai Gakujutsu Koenkai Yoshishu, p.381 - 384, 2017/08

no abstracts in English

Journal Articles

Design and application of greenhouse on the maintenance of analytical machineries in Tokai Reprocessing Plant

Suzuki, Yoshimasa; Tanaka, Naoki; Goto, Yuichi; Inada, Satoshi; Kuno, Takehiko

Nihon Hozen Gakkai Dai-14-Kai Gakujutsu Koenkai Yoshishu, p.385 - 389, 2017/08

Greenhouse is used in order to prevent diffusion of radioactive materials on the maintenance of machineries and decomposition of the analytical equipment such as glove box in Tokai Reprocessing Plant (TRP). The specifications of the greenhouse change depending on a risk of the radiation exposure, operation and environment. Design and application of original greenhouses in the analytical laboratory of TRP is summarized.

Journal Articles

Control of fine particles accumulation in the extraction chromatography column system for minor actinide recovery

Watanabe, So; Goto, Ichiro; Sano, Yuichi; Nomura, Kazunori; Koma, Yoshikazu

Proceedings of 2017 International Congress on Advances in Nuclear Power Plants (ICAPP 2017) (CD-ROM), 7 Pages, 2017/04

Journal Articles

Cross-checking groundwater age by $$^{4}$$He and $$^{14}$$C dating in a granite, Tono area, central Japan

Hasegawa, Takuma*; Nakata, Kotaro*; Tomioka, Yuichi*; Goto, Kazuyuki*; Kashiwaya, Koki*; Hama, Katsuhiro; Iwatsuki, Teruki; Kunimaru, Takanori*; Takeda, Masaki

Geochimica et Cosmochimica Acta, 192, p.166 - 185, 2016/11

 Times Cited Count:10 Percentile:36.21(Geochemistry & Geophysics)

Groundwater dating was performed simultaneously by the $$^{4}$$He and $$^{14}$$C methods in granite of the Tono area in central Japan. Groundwater was sampled at 30 packed-off sections of six 1000-m boreholes. $$^{4}$$He concentrations increased and $$^{14}$$C concentrations decreased along a groundwater flow path on a topographic gradient. $$^{4}$$He ages were calculated by using the in situ $$^{4}$$He production rate derived from the porosity, density, and U and Th content of the rock, neglecting external flux. The linear relation between the $$^{4}$$He ages and the noncorrected $$^{14}$$C ages, except in the discharge area. Simultaneous measurements make it feasible to estimate the accumulation rate of $$^{4}$$He and initial dilution of $$^{14}$$C, which cannot be done with a single method. Cross-checking groundwater dating has the potential to provide more reliable groundwater ages.

153 (Records 1-20 displayed on this page)