Refine your search:     
Report No.
Search Results: Records 1-20 displayed on this page of 669

Presentation/Publication Type

Initialising ...


Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...


Initialising ...


Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Comparison of sodium fast reactor core assembly seismic evaluation using the Japanese and French simulation tools

Yamamoto, Tomohiko; Matsubara, Shinichiro*; Harada, Hidenori*; Saunier, P.*; Martin, L.*; Gentet, D.*; Dirat, J.-F.*; Collignon, C.*

Nuclear Engineering and Design, 383, p.111406_1 - 111406_14, 2021/11

 Times Cited Count:0

Japan-France collaboration on ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration) project is launched in 2014. In this project, Japan-France evaluates core assemblies with interferences on seismic event. The object of this study is to verify the seismic evaluation method on core assemblies between Japan and France by comparing the results. The analysis of this benchmark calculation shows a satisfactory agreement between the Japanese and French tools and the figures show a good behavior of the core in horizontal direction under French seismic condition.

JAEA Reports

Carrying-out of whole nuclear fuel materials in Plutonium Research Building No.1

Inagawa, Jun; Kitatsuji, Yoshihiro; Otobe, Haruyoshi; Nakada, Masami; Takano, Masahide; Akie, Hiroshi; Shimizu, Osamu; Komuro, Michiyasu; Oura, Hirofumi*; Nagai, Isao*; et al.

JAEA-Technology 2021-001, 144 Pages, 2021/08


Plutonium Research Building No.1 (Pu1) was qualified as a facility to decommission, and preparatory operations for decommission were worked by the research groups users and the facility managers of Pu1. The operation of transportation of whole nuclear materials in Pu1 to Back-end Cycle Key Element Research Facility (BECKY) completed at Dec. 2020. In the operation included evaluation of criticality safety for changing permission of the license for use nuclear fuel materials in BECKY, cask of the transportation, the registration request of the cask at the institute, the test transportation, formulation of plan for whole nuclear materials transportation, and the main transportation. This report circumstantially shows all of those process to help prospective decommission.

Journal Articles

Practical tests of neutron transmission imaging with a superconducting kinetic-inductance sensor

Vu, TheDang; Shishido, Hiroaki*; Aizawa, Kazuya; Kojima, Kenji M*; Koyama, Tomio*; Oikawa, Kenichi; Harada, Masahide; Oku, Takayuki; Soyama, Kazuhiko; Miyajima, Shigeyuki*; et al.

Nuclear Instruments and Methods in Physics Research A, 1006, p.165411_1 - 165411_8, 2021/08

 Times Cited Count:0 Percentile:0.03(Instruments & Instrumentation)

Journal Articles

Neutron capture cross sections of curium isotopes measured with ANNRI at J-PARC

Kawase, Shoichiro*; Kimura, Atsushi; Harada, Hideo; Iwamoto, Nobuyuki; Iwamoto, Osamu; Nakamura, Shoji; Segawa, Mariko; Toh, Yosuke

Journal of Nuclear Science and Technology, 58(7), p.764 - 786, 2021/07

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Journal Articles

Chemical-pressure-induced point defects enable low thermal conductivity for Mg$$_{2}$$Sn and Mg$$_{2}$$Si single crystals

Saito, Wataru*; Hayashi, Kei*; Huang, Z.*; Sugimoto, Kazuya*; Oyama, Kenji*; Happo, Naohisa*; Harada, Masahide; Oikawa, Kenichi; Inamura, Yasuhiro; Hayashi, Koichi*; et al.

ACS Applied Energy Materials (Internet), 4(5), p.5123 - 5131, 2021/05

 Times Cited Count:0 Percentile:0(Chemistry, Physical)

Journal Articles

Feasibility study of PGAA for boride identification in simulated melted core materials

Tsuchikawa, Yusuke; Abe, Yuta; Oishi, Yuji*; Kai, Tetsuya; Toh, Yosuke; Segawa, Mariko; Maeda, Makoto; Kimura, Atsushi; Nakamura, Shoji; Harada, Masahide; et al.

JPS Conference Proceedings (Internet), 33, p.011074_1 - 011074_6, 2021/03

In the decommissioning of the Fukushima-Daiichi (1F) Nuclear Power Plant, it is essential to understand characteristics of the melted core materials. The estimation of boride in the real debris is of great importance to develop safe debris removal plans. Hence, it is required to investigate the amount of boron in the melted core materials with nondestructive methods. Prompt gamma-ray activation analysis (PGAA) is one of the useful techniques to determine the amount of borides by means of the 478 keV prompt gamma-ray from neutron absorption reaction of boron. Moreover, it is well known that the width of the 478 keV gamma-ray peak is typically broadened due to the Doppler effect. The degree of the broadening is affected by coexisting materials, and can be recognized by the width of the prompt gamma-ray peak. As a feasibility study, the prompt gamma-ray from boride samples were measured using the ANNRI, NOBORU, and RADEN beamlines at the Materials and Life Science Experimental Facility (MLF) of Japan Proton Accelerator Complex (J-PARC).

Journal Articles

Behavior of tritium release from a stainless vessel of the mercury target as a spallation neutron source

Kasugai, Yoshimi; Sato, Koichi; Takahashi, Kazutoshi*; Miyamoto, Yukihiro; Kai, Tetsuya; Harada, Masahide; Haga, Katsuhiro; Takada, Hiroshi

JPS Conference Proceedings (Internet), 33, p.011144_1 - 011144_6, 2021/03

A spallation neutron source with a mercury target has been in operation at the Materials and Life Science Experimental Facility of J-PARC since 2008. The target vessel made of stainless steel is required to be exchanged periodically due to radiation damage etc. In this presentation, tritium gas release observed in the first series of exchange work in 2011 and the analytical results will be shown.

Journal Articles

Study of neutron-nuclear spin correlation term with a polarized Xe target

Sakai, Kenji; Oku, Takayuki; Okudaira, Takuya; Kai, Tetsuya; Harada, Masahide; Hiroi, Kosuke; Hayashida, Hirotoshi*; Kakurai, Kazuhisa*; Shimizu, Hirohiko*; Hirota, Katsuya*; et al.

JPS Conference Proceedings (Internet), 33, p.011116_1 - 011116_6, 2021/03

In neutron fundamental physics, study of correlation term $${bf s}cdot{bf I}$$ of a neutron spin $${bf s}$$ and a target nuclear spin $${bf I}$$ is important because $${bf s}cdot{bf I}$$ term interferes to parity non-conserving (PNC) and time reversal non-conserving terms. For this study, a xenon (Xe) is an interesting nucleus because it has been observed an enhancement of PNC effect around neutron resonance peaks, and polarizes up to $$ sim 10^{-1}$$ by using a spin exchange optical pumping (SEOP) method. We would plan to develop a polarized Xe gas target with a compact in-situ SEOP system, and to study $${bf s}cdot{bf I}$$ term by utilizing epithermal neutron beams supplied from a high intense pulsed spallation neutron source. As the first step, we attempted to measure neutron polarizing ability caused by $${bf s}cdot{bf I}$$ term at a 9.6 eV s-wave resonance peak of $$^{129}$$Xe at BL10 in MLF, by detecting change $$Delta R$$ of ratio between neutron transmissions with the polarized and unpolarized Xe target. After demonstrating that our apparatus could detect small change ($$Delta R_{rm DB} , {approx},10^{-2}$$) of neutron transmissions caused by Doppler broadening effect, a signified value of $$Delta R$$ has been obtained as preliminary results. For analyzing the obtained $$Delta R$$ in detail, we are improving our nuclear magnetic resonance and electron paramagnetic resonance systems for evaluating Xe polarization independently of neutron beams.

Journal Articles

Simulation study of heavy ion acceleration in J-PARC

Harada, Hiroyuki; Saha, P. K.; Kinsho, Michikazu

JPS Conference Proceedings (Internet), 33, p.011028_1 - 011028_6, 2021/03

Recently, humankind had big discovery about neutron star, which is great big nuclear in the space. They are discovery of neutron star with twice mass of solar in 2010 and detection of gravity wave when two neutron stars incorporate in 2017. In order to understand the high dense matter like the neutron star, project of experimental researches by using accelerated heavy ion beams are planed in the world. The J-PARC facility consists of three accelerators, which are 400 MeV linac, 3 GeV rapid cycling synchrotron and Main Ring synchrotron. The accelerated MW class high intensity proton beams are used in many experiments. We have simulation study of the heavy ion beam in J-PARC to fully utilize high intensity ability of J-PARC. We propose the accelerator scheme of the beam in J-PARC and the intensity will reach to the world record. In my talk, I will introduce the accelerator scheme for the high-intensity heavy ion beam in J-PARC.

Journal Articles

Development of laser system for laser stripping injection

Harada, Hiroyuki; Saha, P. K.; Yoneda, Hitoki*; Michine, Yurina*; Fuchi, Aoi*; Sato, Atsushi*; Kinsho, Michikazu

JPS Conference Proceedings (Internet), 33, p.011026_1 - 011026_6, 2021/03

The charge-exchange multi-turn injection by using a carbon stripper foil is adopted in high-intensity proton ring accelerators worldwide. It is a beneficial method to compress the pulsed proton beam with high intensity but there are serious issues for high intensity. First issue is a short lifetime of the foil by deformation or breaking itself. Another issue is high radiation dose corresponding to the scattered particles on the foil. Therefore, a non-destructive stripping injection method is required for higher intensity proton beam. We newly propose a non-destructive method of H$$^{-}$$ stripping by using only laser. The new method is called "laser stripping injection". To establish our method, we are preparing for a POP (Proof-of-Principle) experiment of 400 MeV H- stripping to proton at J-PARC. In our presentation we will present the current status of laser system development for laser stripping injection at J-PARC.

Journal Articles

New method for high resolution analysis of betatron tune in a rapid cycling synchrotron or a booster ring

Harada, Hiroyuki; Hayashi, Naoki

JPS Conference Proceedings (Internet), 33, p.011027_1 - 011027_6, 2021/03

The transverse betatron tune is one of the most important key parameters in a ring accelerator because emittance growth and beam loss occur directly in case of crossing a betatron resonance. Especially, the tune must be required a controll with high accuracy in high intensity proton accelerator from the view point of space charge force and the beam instability. In general measurement method, the betatron tune is measured by analyzing the detected beam oscillation on Fourier transform. However, the beam is quickly accelerated and the revolution frequency of the beam changes quickly in a rapid cycling synchrotron. So, the tune accuracy is not improved. A new method was developed for high resolution analysis of the tune and was evaluated in J-PARC accelerator. Tune accuracy was successfully improved from 0.013 to less than 0.001. Tune controll with high accuracy is base for high-intensity beam. In this paper, the new method is introduced and the measured result in J-PARC is report.

Journal Articles

1.2-MW-equivalent high-intensity beam tests in J-PARC RCS

Hotchi, Hideaki; Harada, Hiroyuki; Hayashi, Naoki; Kinsho, Michikazu; Okabe, Kota; Saha, P. K.; Shobuda, Yoshihiro; Tamura, Fumihiko; Yamamoto, Kazami; Yamamoto, Masanobu; et al.

JPS Conference Proceedings (Internet), 33, p.011018_1 - 011018_6, 2021/03

no abstracts in English

Journal Articles

Flexible chopper gate pulse generation for the J-PARC RCS

Tamura, Fumihiko; Yamamoto, Masanobu; Yoshii, Masahito*; Sugiyama, Yasuyuki*; Hotchi, Hideaki; Saha, P. K.; Yoshimoto, Masahiro; Harada, Hiroyuki

JPS Conference Proceedings (Internet), 33, p.011021_1 - 011021_6, 2021/03

Chopped beam injection is employed in the J-PARC RCS to avoid the longitudinal beam losses. A fast beam chopper is installed in the MEBT section of the linac. The chopper is driven by the gate pulses sent from the LLRF control system of the RCS. The delay from the zero crossing of the RCS rf and the width are set so that the beam pulse is injected into the proper phase position of the rf bucket. A unique feature of the J-PARC chopper gate pulse generation is thinning of the pulses. The thinning is useful to control the beam intensity without changing much the condition of the longitudinal painting. Also, the beam macro pulse can be trimmed down to a single intermediate pulse by setting the parameters. In this poster, we present the overview of the generation of the chopper gate pulse in the LLRF control system and various beam commissioning results utilizing the flexibility of it. Also, we discuss the upgrade of the chopper gate pulse generation.

Journal Articles

Studies of laser power reduction for the laser stripping of 400 MeV $$H^{-}$$ beam at J-PARC RCS

Saha, P. K.; Harada, Hiroyuki; Kinsho, Michikazu; Yoneda, Hitoki*; Michine, Yurina*; Fuchi, Aoi*; Sato, Atsushi*; Liu, Y.*

JPS Conference Proceedings (Internet), 33, p.011025_1 - 011025_7, 2021/03

Journal Articles

High-spin states in $$^{35}$$S

Go, Shintaro*; Ideguchi, Eiji*; Yokoyama, Rin*; Aoi, Nori*; Azaiez, F.*; Furutaka, Kazuyoshi; Hatsukawa, Yuichi; Kimura, Atsushi; Kisamori, Keiichi*; Kobayashi, Motoki*; et al.

Physical Review C, 103(3), p.034327_1 - 034327_8, 2021/03

 Times Cited Count:0 Percentile:0.03(Physics, Nuclear)

Journal Articles

Homogeneity of neutron transmission imaging over a large sensitive area with a four-channel superconducting detector

Vu, TheDang; Shishido, Hiroaki*; Kojima, Kenji M*; Koyama, Tomio*; Oikawa, Kenichi; Harada, Masahide; Miyajima, Shigeyuki*; Oku, Takayuki; Soyama, Kazuhiko; Aizawa, Kazuya; et al.

Superconductor Science and Technology, 34(1), p.015010_1 - 015010_10, 2021/01

 Times Cited Count:2 Percentile:72.02(Physics, Applied)

Journal Articles

Water distribution in Nafion thin films on hydrophilic and hydrophobic carbon substrates

Ito, Kanae; Harada, Masashi*; Yamada, Norifumi*; Kudo, Kenji*; Aoki, Hiroyuki; Kanaya, Toshiji*

Langmuir, 36(43), p.12830 - 12837, 2020/11

 Times Cited Count:2 Percentile:21.55(Chemistry, Multidisciplinary)

JAEA Reports

Decommissioning of the Uranium Enrichment Laboratory

Kokusen, Junya; Akasaka, Shingo*; Shimizu, Osamu; Kanazawa, Hiroyuki; Honda, Junichi; Harada, Katsuya; Okamoto, Hisato

JAEA-Technology 2020-011, 70 Pages, 2020/10


The Uranium Enrichment Laboratory in the Japan Atomic Energy Agency (JAEA) was constructed in 1972 for the purpose of uranium enrichment research. The smoke emitting accident on 1989 and the fire accident on 1997 had been happened in this facility. The research on uranium enrichment was completed in JFY1998. The decommissioning work was started including the transfer of the nuclear fuel material to the other facility in JFY2012. The decommissioning work was completed in JFY2019 which are consisting of removing the hood, dismantlement of wall and ceiling with contamination caused by fire accident. The releasing the controlled area was performed after the confirmation of any contamination is not remained in the target area. The radioactive waste was generated while decommissioning, burnable and non-flammable are 1.7t and 69.5t respectively. The Laboratory will be used as a general facility for cold experiments.

Journal Articles

Status of laser development for laser stripping experiment at J-PARC

Harada, Hiroyuki; Saha, P. K.; Yoneda, Hitoki*; Michine, Yurina*; Fuchi, Aoi*; Sato, Atsushi*; Shibata, Takanori*; Kinsho, Michikazu

Proceedings of 17th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.441 - 445, 2020/09

The high-intensity proton accelerator adopts a charge exchange injection scheme, which injects with exchanging from negative Hydrogen ion to proton by using carbon foil. This scheme is destructive-type method by using the foil and can accumulate high intensity proton beam. However, the uncontrolled beam losses by scattering at the foil and the foil breaking by the beam collision are a key issue of high-intensity proton accelerator. In order to realize higher intensity, new injection scheme of non-destructive type is needed instead of the foil. We newly propose laser stripping injection scheme by using laser pulse. We plan proof of principle experiment at J-PARC and are developing the laser system. In my presentation, we introduce the overview of laser stripping injection scheme and report the status of laser development.

Journal Articles

Status of the proof-of-principle demonstration of 400 MeV H$$^{-}$$ laser stripping at J-PARC

Saha, P. K.; Harada, Hiroyuki; Yoneda, Hitoki*; Michine, Yurina*; Fuchi, Aoi*; Sato, Atsushi*; Shibata, Takanori*; Kinsho, Michikazu

Proceedings of 17th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.436 - 440, 2020/09

669 (Records 1-20 displayed on this page)