Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Sweet, M.*; Mishima, Kenji*; Harada, Masahide; Kurita, Keisuke; Iikura, Hiroshi; Tasaki, Seiji*; Kikuchi, Norio*
Quantum Beam Science (Internet), 9(2), p.11_1 - 11_17, 2025/04
Neutron beam, being electrically neutral and highly penetrating, offers unique advantages for irradiation of biological species such as plants, seeds, and microorganisms. We comprehensively investigated the potential of neutron irradiation for inducing genetic mutations using simulations of J-PARC BL10, JRR-3 TNRF, and KUANS for spallation, reactor, and compact neutron sources.
Lee, D. H.*; Dodo, Taku; Haga, Katsuhiro; Harada, Masahide; Hasegawa, Shoichi; Kasugai, Yoshimi; Kinoshita, Hidetaka; Masuda, Shiho; Meigo, Shinichiro; Sakai, Kenji; et al.
Nuclear Instruments and Methods in Physics Research A, 1072, p.170216_1 - 170216_6, 2025/03
Times Cited Count:1 Percentile:98.58(Instruments & Instrumentation)Dodo, Taku; Haga, Katsuhiro; Harada, Masahide; Hasegawa, Shoichi; Kasugai, Yoshimi; Kinoshita, Hidetaka; Masuda, Shiho; Meigo, Shinichiro; Sakai, Kenji; Suzuya, Kentaro; et al.
Progress of Theoretical and Experimental Physics (Internet), 2025(2), p.023H02_1 - 023H02_8, 2025/02
Times Cited Count:0 Percentile:0.00(Physics, Multidisciplinary)Marzec, E.*; Dodo, Taku; Haga, Katsuhiro; Harada, Masahide; Hasegawa, Shoichi; Kasugai, Yoshimi; Kinoshita, Hidetaka; Masuda, Shiho; Meigo, Shinichiro; Sakai, Kenji; et al.
Physical Review Letters, 134, p.081801_1 - 081801_9, 2025/00
Vu, TheDang*; Shishido, Hiroaki*; Aizawa, Kazuya; Oku, Takayuki; Oikawa, Kenichi; Harada, Masahide; Kojima, Kenji M*; Miyajima, Shigeyuki*; Soyama, Kazuhiko; Koyama, Tomio*; et al.
IEEJ Transactions on Electrical and Electronic Engineering, 19(11), p.1888 - 1894, 2024/11
Times Cited Count:0 Percentile:0.00(Engineering, Electrical & Electronic)Nirei, Masami; Kofu, Maiko; Nakajima, Kenji; Kikuchi, Tatsuya*; Kawamura, Seiko; Murai, Naoki; Harada, Masahide; Inamura, Yasuhiro
Journal of Neutron Research, 26(2-3), p.75 - 82, 2024/09
Yamaguchi, Yuji; Harada, Masahide; Haga, Katsuhiro
JAEA-Data/Code 2024-008, 91 Pages, 2024/08
We have produced a dataset of the yields of radionuclides produced by the nuclear capture of negative muons applying Monte Carlo calculation due to scarce experimental data for the sake of radiation safety of experimental facilities which can provide negative muons. The dataset covers all the stable targets of natural elements. The use of the dataset is described in an example of radioactive estimation for a negative-muon-irradiated sample. The dataset reported is fundamental data expected to be utilized in experiments with negative muons of various fields including radiation safety.
Vu, TheDang*; Shishido, Hiroaki*; Aizawa, Kazuya; Oku, Takayuki; Oikawa, Kenichi; Harada, Masahide; Kojima, Kenji M*; Miyajima, Shigeyuki*; Soyama, Kazuhiko; Koyama, Tomio*; et al.
Journal of Physics; Conference Series, 2776, p.012009_1 - 012009_9, 2024/06
Lee, D. H.*; Dodo, Taku; Haga, Katsuhiro; Harada, Masahide; Hasegawa, Shoichi; Kasugai, Yoshimi; Kinoshita, Hidetaka; Masuda, Shiho; Meigo, Shinichiro; Sakai, Kenji; et al.
European Physical Journal C, 84, p.409_1 - 409_6, 2024/04
Times Cited Count:1 Percentile:53.60(Physics, Particles & Fields)Ishida, Takekazu*; Vu, TheDang*; Shishido, Hiroaki*; Aizawa, Kazuya; Oku, Takayuki; Oikawa, Kenichi; Harada, Masahide; Kojima, Kenji M*; Miyajima, Shigeyuki*; Koyama, Tomio*; et al.
Journal of Low Temperature Physics, 214(3-4), p.152 - 157, 2024/02
Times Cited Count:0 Percentile:0.00(Physics, Applied)Shin, C. D.*; Dodo, Taku; Haga, Katsuhiro; Harada, Masahide; Hasegawa, Shoichi; Kasugai, Yoshimi; Kinoshita, Hidetaka; Masuda, Shiho; Meigo, Shinichiro; Sakai, Kenji; et al.
Journal of Instrumentation (Internet), 18(12), p.T12001_1 - T12001_9, 2023/12
Times Cited Count:0 Percentile:0.00(Instruments & Instrumentation)Shishido, Hiroaki*; Vu, TheDang*; Aizawa, Kazuya; Kojima, Kenji M*; Koyama, Tomio*; Oikawa, Kenichi; Harada, Masahide; Oku, Takayuki; Soyama, Kazuhiko; Miyajima, Shigeyuki*; et al.
Journal of Applied Crystallography, 56(4), p.1108 - 1113, 2023/08
Times Cited Count:2 Percentile:47.77(Chemistry, Multidisciplinary)Hayashi, Koichi*; Lederer, M.*; Fukumoto, Yohei*; Goto, Masashi*; Yamamoto, Yuta*; Happo, Naohisa*; Harada, Masahide; Inamura, Yasuhiro; Oikawa, Kenichi; Oyama, Kenji*; et al.
Applied Physics Letters, 120(13), p.132101_1 - 132101_6, 2022/03
Times Cited Count:3 Percentile:27.65(Physics, Applied)Shishido, Hiroaki*; Nishimura, Kazuma*; Vu, TheDang*; Aizawa, Kazuya; Kojima, Kenji M*; Koyama, Tomio*; Oikawa, Kenichi; Harada, Masahide; Oku, Takayuki; Soyama, Kazuhiko; et al.
IEEE Transactions on Applied Superconductivity, 31(9), p.2400505_1 - 2400505_5, 2021/12
Times Cited Count:1 Percentile:0.00(Engineering, Electrical & Electronic)In this study, we employed a superconducting detector, current-biased kinetic-inductance detector (CB-KID) for neutron imaging using a pulsed neutron source. We employed the delay-line method, and high spatial resolution imaging with only four reading channels was achieved. We also performed wavelength-resolved neutron imaging by the time-of-flight method. We obtained the neutron transmission images of a Gd-Al alloy sample, inside which single crystals of GdAl were grown, using the delay-line CB-KID. Single crystals were well imaged, in both shapes and distributions, throughout the Al-Gd alloy. We identified Gd nuclei via neutron transmissions that exhibited characteristic suppression above the neutron wavelength of 0.03 nm. In addition, the
Gd resonance dip, a dip structure of the transmission caused by the nuclear reaction between an isotope and neutrons, was observed even when the number of events was summed over a limited area of 15
m
12
m. Gd selective imaging was performed using the resonance dip of
Gd, and it showed clear Gd distribution even with a limited neutron wavelength range of 1 pm.
Arai, Masatoshi*; Andersen, K. H.*; Argyriou, D. N.*; Schweika, W.*; Zanini, L.*; Harjo, S.; Kamiyama, Takashi*; Harada, Masahide
Journal of Neutron Research, 23(4), p.215 - 232, 2021/12
Ajimura, Shuhei*; Haga, Katsuhiro; Harada, Masahide; Hasegawa, Shoichi; Kasugai, Yoshimi; Kinoshita, Hidetaka; Masuda, Shiho; Meigo, Shinichiro; Sakai, Kenji; Suzuya, Kentaro; et al.
Nuclear Instruments and Methods in Physics Research A, 1014, p.165742_1 - 165742_15, 2021/10
Times Cited Count:23 Percentile:94.81(Instruments & Instrumentation)Inagawa, Jun; Kitatsuji, Yoshihiro; Otobe, Haruyoshi; Nakada, Masami; Takano, Masahide; Akie, Hiroshi; Shimizu, Osamu; Komuro, Michiyasu; Oura, Hirofumi*; Nagai, Isao*; et al.
JAEA-Technology 2021-001, 144 Pages, 2021/08
Plutonium Research Building No.1 (Pu1) was qualified as a facility to decommission, and preparatory operations for decommission were worked by the research groups users and the facility managers of Pu1. The operation of transportation of whole nuclear materials in Pu1 to Back-end Cycle Key Element Research Facility (BECKY) completed at Dec. 2020. In the operation included evaluation of criticality safety for changing permission of the license for use nuclear fuel materials in BECKY, cask of the transportation, the registration request of the cask at the institute, the test transportation, formulation of plan for whole nuclear materials transportation, and the main transportation. This report circumstantially shows all of those process to help prospective decommission.
Vu, TheDang; Shishido, Hiroaki*; Aizawa, Kazuya; Kojima, Kenji M*; Koyama, Tomio*; Oikawa, Kenichi; Harada, Masahide; Oku, Takayuki; Soyama, Kazuhiko; Miyajima, Shigeyuki*; et al.
Nuclear Instruments and Methods in Physics Research A, 1006, p.165411_1 - 165411_8, 2021/08
Times Cited Count:2 Percentile:14.30(Instruments & Instrumentation)Shishido, Hiroaki*; Vu, TheDang*; Aizawa, Kazuya; Kojima, Kenji M*; Koyama, Tomio*; Oikawa, Kenichi; Harada, Masahide; Oku, Takayuki; Soyama, Kazuhiko; Miyajima, Shigeyuki*; et al.
Journal of Physics; Conference Series, 1975, p.012023_1 - 012023_8, 2021/07
Times Cited Count:0 Percentile:0.00(Engineering, Electrical & Electronic)Harada, Masahide; Teshigawara, Makoto; Oi, Motoki; Oikawa, Kenichi; Takada, Hiroshi; Ikeda, Yujiro
Nuclear Instruments and Methods in Physics Research A, 1000, p.165252_1 - 165252_8, 2021/06
Times Cited Count:4 Percentile:45.69(Instruments & Instrumentation)This study explores high-energy neutron components of the extracted neutron beam at J-PARC pulsed neutron source using the foil activation method with threshold reactions. Foils of aluminum, gold, bismuth, niobium, and thulium were used to cover the neutron energy range from 0.3 MeV to 79.4 MeV. The experiment was performed using neutron beams of BL10 (NOBORU). The foils were irradiated by a neutron beam at 13.4 m from the moderator. To characterize high-energy neutron fields for irradiation applications, reaction rates in three different configurations with and without BC slit and Pb filter were examined. To compare the experiments with calculations given for the user, reaction rates for corresponding reactions were calculated by the PHITS code with the JENDL-3.2 and the JENDL dosimetry file. Although there was a systematic tendency in C/E (Calculation/Experiment) ratios for different threshold energies, which C/E ratio decreased as threshold energy increased up to 100 MeV, and all C/E ratios were in the range of 1.0
0.2. This indicated that high-energy neutron calculations were adequate for the analysis of experimental data for NOBORU users.