Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 180

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

HFB-1 borehole survey data collection

Miyakawa, Kazuya; Hayano, Akira; Sato, Naomi; Nakata, Kotaro*; Hasegawa, Takuma*

JAEA-Data/Code 2023-009, 103 Pages, 2023/09

JAEA-Data-Code-2023-009.pdf:9.29MB
JAEA-Data-Code-2023-009-appendix1(DVD-ROM).zip:271.51MB
JAEA-Data-Code-2023-009-appendix2(DVD-ROM).zip:883.78MB
JAEA-Data-Code-2023-009-appendix3(DVD-ROM).zip:10.29MB

This borehole investigation was carried out to confirm the validity of the distribution of low flow areas deep underground estimated based on the geophysical survey in FY 2020, as a part of an R&D supporting program titled "Research and development on Groundwater Flow Evaluation Technology in Bedrock" under contract to the Ministry of Economy, Trade and Industry (2021, 2022 FY, Grant Number: JPJ007597). The borehole name is Horonobe Fossil seawater Boring-1 and is referred to as HFB-1 borehole. HFB-1 is a vertical borehole drilled adjacent to the Horonobe Underground Research Laboratory (URL), which was drilled from the surface to a depth of 200 m in FY2021 and from a depth of 200 m to 500 m in FY2022. This report summarizes information related to the drilling of HFB-1 and various data (rock core description, geophysical logging, chemical analysis, etc.) obtained from the borehole investigation.

Journal Articles

Microstructural evolution in tungsten binary alloys under proton and self-ion irradiations at 800$$^{circ}$$C

Miyazawa, Takeshi; Kikuchi, Yuta*; Ando, Masami*; Yu, J.-H.*; Yabuuchi, Kiyohiro*; Nozawa, Takashi*; Tanigawa, Hiroyasu*; Nogami, Shuhei*; Hasegawa, Akira*

Journal of Nuclear Materials, 575, p.154239_1 - 154239_11, 2023/03

 Times Cited Count:0 Percentile:0.01(Materials Science, Multidisciplinary)

Journal Articles

Development of long pulse arc driven ion source for iBNCT

Shibata, Takanori*; Sugimura, Takashi*; Ikegami, Kiyoshi*; Takagi, Akira*; Sato, Masaharu*; Naito, Fujio*; Okoshi, Kiyonori; Hasegawa, Kazuo

JPS Conference Proceedings (Internet), 33, p.011009_1 - 011009_6, 2021/03

Upgrade of beam current in the Linac of Ibaraki Boron Neutron Capture Therapy (iBNCT) is one of the most important requirements to realize clinical trial. By 2018, the measurement of the produced neutrons characteristics and the neutron irradiation experiment for living cells have been done by producing 8-MeV proton beam current at the beryllium target with average current up to 2 mA. In order to satisfy the original clinical trial conditions, 5 mA average beam current is required at the target. For this goal, peak beam current extracted from the ion source should be increased to 60 mA from the present 30 mA with duty factor up to more than 10% (pulse width up to 1 ms and repetition rate up to more than 100 Hz). Stability of the peak current in the macro pulse is also important for the clinical application.

Journal Articles

First-principles study of solvent-solute mixed dumbbells in body-centered-cubic tungsten crystals

Suzudo, Tomoaki; Tsuru, Tomohito; Hasegawa, Akira*

Journal of Nuclear Materials, 505, p.15 - 21, 2018/07

AA2017-0485.pdf:0.51MB

 Times Cited Count:16 Percentile:87.08(Materials Science, Multidisciplinary)

Tungsten (W) is considered as a promising candidate for plasma-facing materials for future nuclear fusion devices, and selecting optimal alloying constituents is a critical issue to improve radiation resistance of the W alloys as well as to improve their mechanical properties. We conducted in the current study a series of first-principles calculations for investigating solvent-solute mixed dumbbells in W crystals. The results suggested that titanium (Ti), vanadium (V), and chromium (Cr) are favorable as solutes for W alloys from irradiation-effect perspectives because these elements are expected to promote vacancy-interstitial recombination without causing radiation-induced precipitation that reduces ductility of irradiated materials.

Journal Articles

Suppression of radiation-induced point defects by rhenium and osmium interstitials in tungsten

Suzudo, Tomoaki; Hasegawa, Akira*

Scientific Reports (Internet), 6, p.36738_1 - 36738_6, 2016/11

 Times Cited Count:25 Percentile:63.62(Multidisciplinary Sciences)

Modeling of the evolution of radiation-induced defects is important for finding radiation-resistant materials, which would be greatly appreciated in nuclear applications. We apply the first principles method combined with kinetic Monte Carlo to indicate a mechanism to mitigate the effect of radiation by adding particular solute elements that change the migration dimension of interstitials in W crystals. The resultant mechanism is applicable to any body-centered-cubic (BCC) metals whose SIAs have one-dimensional (1D) motion and is expected to provide a general guideline for computational design of radiation-resistant alloys in the field of nuclear applications.

Journal Articles

Migration of rhenium and osmium interstitials in tungsten

Suzudo, Tomoaki; Yamaguchi, Masatake; Hasegawa, Akira*

Journal of Nuclear Materials, 467(Part 1), p.418 - 423, 2015/12

AA2015-0099.pdf:0.62MB

 Times Cited Count:43 Percentile:96.66(Materials Science, Multidisciplinary)

Tungsten is expected to be a promising plasma-facing material for future fusion devices, but radiation-induced precipitation (RIP), which leads the material to hardening, is a concern at their practical use. One of the keys to accurate prediction of the emergence of RIP is migration of solute atoms, rhenium and osmium, that are produced by nuclear transmutation through irradiation. We conduct a series of numerical simulations using an atomic kinetic Monte Carlo method and investigate the migration of these solute atoms in the form of tungsten-rhenium and tungsten-osmium mixed dumbbells, considered to be the most efficient "carriers" of the solute atoms. We find that the low rotation energy barrier of these mixed dumbbells leading to three-dimensional migration greatly influences their diffusivities. The result also suggests that, although these dumbbells have three-dimensional motion, one cannot simply reduce their migration behavior to that of vacancy-like spherical objects.

Journal Articles

Overview on recent progress toward small specimen test technique

Wakai, Eiichi; Kikuchi, Takayuki; Kim, B.*; Kimura, Akihiko*; Nogami, Shuhei*; Hasegawa, Akira*; Nishimura, Arata*; Soldaini, M.*; Yamamoto, Michiyoshi*; Knaster, J.*

Fusion Engineering and Design, 98-99, p.2089 - 2093, 2015/10

 Times Cited Count:14 Percentile:77.78(Nuclear Science & Technology)

Journal Articles

Simulation of phase modulation for longitudinal emittance blow-up in J-PARC MR

Yamamoto, Masanobu; Ezura, Eiji*; Hara, Keigo*; Hasegawa, Katsushi*; Nomura, Masahiro; Omori, Chihiro*; Schnase, A.*; Shimada, Taihei; Takagi, Akira*; Takata, Koji*; et al.

JPS Conference Proceedings (Internet), 8, p.012015_1 - 012015_6, 2015/09

The J-PARC MR provides a coasting proton beam for nuclear physics experiments by slow extraction. The longitudinal emittance should be enlarged until the MR flat top to mitigate the microwave instability. We have investigated a Phase Modulation (PM) method by using a High Frequency Cavity (HFC) to increase the emittance. We have performed extensive simulation studies to find the appropriate parameters of the PM through the particle tracking simulation. We found that the effective HFC frequency has linear dependence with the PM frequency, where the emittance is smoothly enlarged. Furthermore, we found that the required HFC voltage is inverse proportional to the square root of the duration time of the PM. These PM properties will be used for the design of the HFC. We describe the particle tracking simulation results of controlled emittance blow-up by the PM.

Journal Articles

Numerical analysis of organ doses delivered during computed tomography examinations using Japanese adult phantoms with the WAZA-ARI dosimetry system

Takahashi, Fumiaki; Sato, Kaoru; Endo, Akira; Ono, Koji*; Ban, Nobuhiko*; Hasegawa, Takayuki*; Katsunuma, Yasushi*; Yoshitake, Takayasu*; Kai, Michiaki*

Health Physics, 109(2), p.104 - 112, 2015/08

 Times Cited Count:8 Percentile:56.45(Environmental Sciences)

A dosimetry system, named WAZA-ARI, is developed to assess accurately radiation doses to persons from Computed Tomography (CT) examination patients in Japan. Organ doses were prepared to application to dose calculations in WAZA-ARI by numerical analyses using average adult Japanese human models with the Particle and Heavy Ion Transport code System (PHITS). Experimental studies clarified the radiation configuration on the table for some multi-detector row CT (MDCT) devices. Then, a source model in PHITS could specifically take into account for emissions of X-ray in each MDCT device based on the experiment results. Numerical analyses with PHITS revealed a concordance of organ doses with human body size. The organ doses by the JM phantoms were compared with data obtained using previously developed systems. In addition, the dose calculation in WAZA-ARI were verified with previously reported results by realistic NUBAS phantoms and radiation dose measurement using a physical Japanese model. The results implied that analyses using the Japanese phantoms and PHITS including source models can appropriately give organ dose data with consideration of the MDCT device and physiques of typical Japanese adults.

Journal Articles

Experiments of coolant accumulation in SG U tube and analytical model development

Yamaji, Tatsuya*; Koizumi, Yasuo; Yamazaki, Kohei*; Otake, Hiroyasu*; Hasegawa, Koji*; Onuki, Akira*; Kanamori, Daisuke*

Konsoryu Shimpojiumu 2015 Koen Rombunshu (USB Flash Drive), 2 Pages, 2015/08

Experiments of condensing counter-current two-phase flow in a vertical pipe were performed. This study was intended to examine water accumulation in the up-flow side of steam generator U-tubes of a PWR during the reflux cooling stage of a small break LOCA. It has been apprehended that the water accumulation may result in temporary core liquid level depression. The inner diameter and the length of a test flow channel used in the experiments were 18 mm and 4 m, respectively. The experiments were performed by using steam and water at 0.1 MPa. Two kinds of experiments were conducted; visualization experiments by using a transparent test section and quantitative water accumulation evaluation experiments by using a brass test section. Even if water on the inner surface of the test pipe could not flow downward at the lower portion of the test pipe, a part of water became to flow downward at the upper portion of the test pipe since steam velocity decreased because of condensation. Thus, two-phase mixture level was formed in the upper portion of the test pipe, which resulted in the water accumulation in the pipe. The model to predict the water accumulation was proposed. It predicted the water accumulation reasonably well.

Journal Articles

WAZA-ARI; A Dose assessment system for patients in CT scan

Sato, Kaoru; Takahashi, Fumiaki; Endo, Akira; Ono, Koji*; Hasegawa, Takayuki*; Katsunuma, Yasushi*; Yoshitake, Takayasu*; Ban, Nobuhiko*; Kai, Michiaki*

RIST News, (58), p.25 - 32, 2015/01

The Japan Atomic Energy Agency (JAEA) are now developing WAZA-ARI for improvement of management of exposure doses due to CT examination under the joint research with the Oita University of Nursing and Health Sciences. The trial version of WAZA-ARI has been released on 21 December 2012. In trial version, users can perform dose assessment by using organ dose database based on the average adult Japanese male (JM-103) and female (JF-103) voxel phantoms and a 4 years old female voxel phantom (UFF4). The homepage of WAZA-ARI has been accessed over 1000 times per month and 28421 times by the end of September 2014. We are developing WAZA-ARI version 2 as the extension version of dose calculation functions of WAZA-ARI. WAZA-ARI version 2 will be released by the end of March 2015. In WAZA-ARI version 2. Users can upload dose calculation results to WAZA-ARI version 2 server, and utilize improvement of the dose management of patients and the optimization of CT scan conditions.

Journal Articles

Beam test of a new radio frequency quadrupole linac for the Japan Proton Accelerator Research Complex

Kondo, Yasuhiro; Morishita, Takatoshi; Yamazaki, Saishun; Hori, Toshihiko; Sawabe, Yuki; Chishiro, Etsuji; Fukuda, Shimpei; Hasegawa, Kazuo; Hirano, Koichiro; Kikuzawa, Nobuhiro; et al.

Physical Review Special Topics; Accelerators and Beams, 17(12), p.120101_1 - 120101_8, 2014/12

 Times Cited Count:6 Percentile:43.07(Physics, Nuclear)

We performed a beam test of a new radio frequency quadrupole linac (RFQ III) for the beam current upgrade of the Japan Proton Accelerator Research Complex. First, the conditioning of RFQ III was conducted, and after 20 h of conditioning, RFQ III became very stable with a nominal peak power and duty factor of 400 kW and 1.5%, respectively. An off-line beam test was subsequently conducted before installation in the accelerator tunnel. The transmission, transverse emittance, and energy spread of the 50-mA negative hydrogen beam from RFQ III were measured and compared with simulation results. The experiment and simulation results showed good agreement; therefore, we conclude that the performance of RFQ III conforms to its design.

Journal Articles

Stability and mobility of rhenium and osmium in tungsten; First principles study

Suzudo, Tomoaki; Yamaguchi, Masatake; Hasegawa, Akira*

Modelling and Simulation in Materials Science and Engineering, 22(7), p.075006_1 - 075006_13, 2014/10

 Times Cited Count:74 Percentile:92.48(Materials Science, Multidisciplinary)

We report a series of ${it ab initio}$ studies based upon density functional theory for the behavior of rhenium and osmium atoms in tungsten crystal. Contrary to the one-dimensional migration of self-interstitial atoms, interstitials of these solute elements in tungsten have three-dimensional motion. The diffusion of these solute elements strongly influences the effects of radiation upon the materials, and we found that the three-dimensional migration is a property that is key to the explanation of the radiation effects experimentally observed in tungsten-rhenium and tungsten-osmium alloys.

Journal Articles

Present status of J-PARC linac

Oguri, Hidetomo; Hasegawa, Kazuo; Ito, Takashi; Chishiro, Etsuji; Hirano, Koichiro; Morishita, Takatoshi; Shinozaki, Shinichi; Ao, Hiroyuki; Okoshi, Kiyonori; Kondo, Yasuhiro; et al.

Proceedings of 11th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.389 - 393, 2014/10

no abstracts in English

Journal Articles

Observation of the laser-induced surface dynamics using the single-shot soft X-ray laser probe

Hasegawa, Noboru; Ochi, Yoshihiro; Kawachi, Tetsuya; Nishikino, Masaharu; Ishino, Masahiko; Imazono, Takashi; Kaihori, Takeshi; Morita, Toshimasa; Sasaki, Akira; Terakawa, Kota*; et al.

X-Ray Lasers 2012; Springer Proceedings in Physics, Vol.147, p.117 - 120, 2014/00

 Times Cited Count:0 Percentile:0

We have developed the femto-second laser pump and soft X-ray laser probe system in order to observe the dynamical processes of the femto-second laser ablation. By using this system, we succeed to obtain the temporal evolution of the soft X-ray reflectivity from the laser induced Pt surface. The results lead that the rate of decrease in the reflectivity of the probe beam has a non-linear relation with the pump laser fluence.

Journal Articles

Assembly study for JT-60SA tokamak

Shibanuma, Kiyoshi; Arai, Takashi; Hasegawa, Koichi; Hoshi, Ryo; Kamiya, Koji; Kawashima, Hisato; Kubo, Hirotaka; Masaki, Kei; Saeki, Hisashi; Sakurai, Shinji; et al.

Fusion Engineering and Design, 88(6-8), p.705 - 710, 2013/10

 Times Cited Count:10 Percentile:61.35(Nuclear Science & Technology)

Journal Articles

Simulation of controlled longitudinal emittance blow-up in J-PARC RCS

Yamamoto, Masanobu; Nomura, Masahiro; Schnase, A.; Shimada, Taihei; Tamura, Fumihiko; Ezura, Eiji*; Hara, Keigo*; Hasegawa, Katsushi*; Omori, Chihiro*; Takagi, Akira*; et al.

Proceedings of 3rd International Particle Accelerator Conference (IPAC '12) (Internet), p.2952 - 2954, 2012/05

In J-PARC RCS, the high intensity beam is delivered to the MR. The longitudinal beam emittance at the RCS extraction should be optimized to avoid the beam loss after the MR injection. In order to match the longitudinal emittance shape between the RCS and the MR, it is desirable to enlarge the longitudinal emittance during the RCS acceleration. We have performed the particle tracking simulation for the controlled longitudinal emittance blow up in the RCS.

Journal Articles

Development of the X-ray interferometer and the method of spatial and temporal synchronization of XRL and optical pulse

Hasegawa, Noboru; Ochi, Yoshihiro; Kawachi, Tetsuya; Terakawa, Kota*; Tomita, Takuro*; Yamamoto, Minoru; Nishikino, Masaharu; Oba, Toshiyuki; Kaihori, Takeshi; Imazono, Takashi; et al.

X-Ray Lasers 2010; Springer Proceedings in Physics, Vol.136, p.353 - 358, 2011/12

The understanding of the dynamics of the initial process is important for the micro processing and welding by the ultra-short laser pulse. The X-ray laser is suitable for probing this initial process because it has short wavelength (Ni-like Ag, 13.9 nm) and short duration (7 ps). For this investigation, the origin of time of the pumping pulse is quite important. In this study, we used the scintillation plate and the plasma gate technique to realize the spatial and temporal synchronization of the pump and probe pulses. For the spatial alignment, a CsI scintillation plate that was set at the sample position was illuminated by both the X-ray laser pulse, and the fluorescence light were detected by the CCD camera. For the temporal synchronization, we set a thin foil at the sample position. We measured the transmission of the X-ray laser while changing a temporal delay of the pumping laser with respect to the time of X-ray laser pulse to obtain the origin of the irradiation time.

Journal Articles

Observation of the laser-induced surface dynamics by the single-shot X-ray laser interferometer

Hasegawa, Noboru; Ochi, Yoshihiro; Kawachi, Tetsuya; Nishikino, Masaharu; Ishino, Masahiko; Imazono, Takashi; Kaihori, Takeshi; Sasaki, Akira; Terakawa, Kota*; Minami, Yasuo*; et al.

Proceedings of SPIE, Vol.8140, p.81400G_1 - 81400G_8, 2011/10

 Times Cited Count:3 Percentile:82.27

We have developed a soft X-ray laser (SXRL) interferometer capable of the single-shot imaging of nano-scaled structure dynamics. The interferometer consisted of the reflection optics including double Lloyd's mirrors and focusing optics, and the interference fringes are produced on the detector surface. By using this interferometer, the initial stage ($$sim$$50 ps) of the ablation process of the Pt surface pumped by a 70 fs Ti:Sapphire laser pulse was observed. The expansion speed of the surface estimated from the result (34 nm/50 ps) indicated that the nano-bubble structures were formed in the initial stage of the ablation. In order to observe the detailed dynamics, the temporal synchronization between the pump and probe pulses was improved to be 3 ps by adopting a portion of the SXRL and pump beams as the time fiducials, to which the pump and probe timing was adjusted by using the X-ray streak camera.

Journal Articles

Effects of human model configuration in Monte Carlo calculations for organ doses from CT examinations

Takahashi, Fumiaki; Sato, Kaoru; Endo, Akira; Ono, Koji*; Yoshitake, Takayasu*; Hasegawa, Takayuki*; Katsunuma, Yasushi*; Ban, Nobuhiko*; Kai, Michiaki*

Progress in Nuclear Science and Technology (Internet), 2, p.153 - 159, 2011/10

Computed Tomography (CT) is one of the most useful tools for medical diagnosis, and is becoming a major source of medical exposure in developed countries. Appropriate radiation protection in CT examinations is emphasized by international organizations, such as the International Atomic Energy Agency (IAEA), because the patients receive higher radiation doses than in conventional radiography. Medical staffs can acquire dose information on the conditions of some CT examinations with available dosimetry systems, which had been already developed. These systems utilize datasets of organ and tissue doses, which were derived with Monte Carlo calculations. Methods in computational analyses, however, have been improved, since these calculations had been performed. Then, our new dosimetry system for CT examination, WAZA-ARI, is being developed to estimate radiation dose based upon the state-of-art numerical analyses. Our analysis adopts Particle and Heavy Ion Transport code System (PHITS) coupled with a voxel-type phantom, JM phantom, for the organ dose calculation. PHITS has advantageous to define the model of photon emission from X-ray tube in a CT device for radiation transport calculations. The physique and mass of organs for JM phantom are similar to those for average Japanese male adults. Since the goal of WAZA-ARI is to provide dosimetric information of arbitrary patient, it is important to evaluate uncertainty due to different configurations in human bodies between JM phantom and individual patients. For this purpose, the organ doses are calculated and compared for different human models; another Japanese male adult voxel phantom and the ICRP reference voxel phantom, which is constructed on the basis of Caucasian data.

180 (Records 1-20 displayed on this page)