Refine your search:     
Report No.
Search Results: Records 1-20 displayed on this page of 103

Presentation/Publication Type

Initialising ...


Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...


Initialising ...


Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Bromine-isotope selective ionization using field-free alignment of IBr isotopologues with a switched nanosecond laser pulse

Akagi, Hiroshi*; Kumada, Takayuki; Otobe, Tomohito*; Itakura, Ryuji*; Hasegawa, Hirokazu*; Oshima, Yasuhiro*

Chemistry Letters, 49(4), p.416 - 418, 2020/04

 Times Cited Count:0 Percentile:100(Chemistry, Multidisciplinary)

Journal Articles

A Large-scale aerodynamics study on bicycle racing

Aoki, Takayuki*; Hasegawa, Yuta

Jidosha Gijutsu, 74(4), p.18 - 23, 2020/04

Aerodynamics studies for bicycle racings have been carried out by using a CFD simulation based on LES model. For running of alone cyclist and 2-4 cyclists groups, the computational drags are in good agreement with the wind-tunnel experiments. Different shapes of group running and competing two teams are studied. A large-scale computation for a group of 72 cyclists has been performed by using 2.23 billion meshes on a GPU supercomputer.

Journal Articles

Development of inter-digital H-mode drift-tube linac prototype with alternative phase focusing for a muon linac in the J-PARC muon g-2/EDM experiment

Nakazawa, Yuga*; Iinuma, Hiromi*; Iwata, Yoshiyuki*; Iwashita, Yoshihisa*; Otani, Masashi*; Kawamura, Naritoshi*; Mibe, Tsutomu*; Yamazaki, Takayuki*; Yoshida, Mitsuhiro*; Kitamura, Ryo; et al.

Journal of Physics; Conference Series, 1350, p.012054_1 - 012054_7, 2019/12

 Times Cited Count:0 Percentile:100

An inter-digital H-mode drift-tube linac (IH-DTL) is developed in a muon linac at the J-PARC E34 experiment. IH-DTL will accelerate muons from 0.34 MeV to 4.5 MeV at a drive frequency of 324 MHz. Since IH-DTL adopts an APF method, with which the beam is focused in the transverse direction using the rf field only, the proper beam matching of the phase-space distribution is required before the injection into the IH-DTL. Thus, an IH-DTL prototype was fabricated to evaluate the performance of the cavity and beam transmission. As a preparation of the high-power test, tuners and coupler are designed and fabricated. In this paper, the development of the tuner and the coupler and the result of the low-power measurement will be presented.

Journal Articles

Negative muonium ion production with a C12A7 electride film

Otani, Masashi*; Fukao, Yoshinori*; Futatsukawa, Kenta*; Kawamura, Naritoshi*; Matoba, Shiro*; Mibe, Tsutomu*; Miyake, Yasuhiro*; Shimomura, Koichiro*; Yamazaki, Takayuki*; Hasegawa, Kazuo; et al.

Journal of Physics; Conference Series, 1350, p.012067_1 - 012067_6, 2019/12

 Times Cited Count:0 Percentile:100

Negative muonium atom ($$mu^+$$e$$^-$$e$$^-$$, Mu$$^-$$) has unique features stimulating potential interesting for several scientific fields. Since its discovery in late 1980's in vacuum, it has been discussed that the production efficiency would be improved using a low-work function material. C12A7 was a well-known insulator as a constituent of alumina cement, but was recently confirmed to exhibit electric conductivity by electron doping. The C12A7 electride has relatively low-work function (2.9 eV). In this paper, the negative muonium production measurement with several materials including a C12A7 electride film will be presented. Measured production rate of the Mu$$^-$$ were 10$$^{-3}$$/s for all the Al, electride, and SUS target. Significant enhancement on electride target was not observed, thus it is presumed that the surface condition should be more carefully treated. There was no material dependence of the Mu$$^-$$ averaged energy: it was 0.2$$pm$$0.1keV.

Journal Articles

Prototype of an Inter-digital H-mode Drift-Tube Linac for muon linac

Nakazawa, Yuga*; Iinuma, Hiromi*; Iwata, Yoshiyuki*; Iwashita, Yoshihisa*; Otani, Masashi*; Kawamura, Naritoshi*; Mibe, Tsutomu*; Yamazaki, Takayuki*; Yoshida, Mitsuhiro*; Kitamura, Ryo*; et al.

Proceedings of 29th International Linear Accelerator Conference (LINAC 2018) (Internet), p.180 - 183, 2019/01

We have developed an Interdigital H-mode (IH) Drift-Tube Linac (DTL) design with an alternative phase focusing (APF) scheme for a muon linac, in order to measure the anomalous magnetic moment and electric dipole moment (EDM) of muons at the Japan Proton Accelerator Research Complex (J-PARC). The IH-DTL accelerates muons from beta 0.08 to 0.28 at an operational frequency of 324 MHz. The output beam emittances are calculated as 0.315 $$pi$$ and 0.195 $$pi$$ mm mrad in the horizontal and vertical directions, respectively, which satisfies the experimental requirement.

Journal Articles

First muon acceleration using a radio-frequency accelerator

Bae, S.*; Choi, H.*; Choi, S.*; Fukao, Yoshinori*; Futatsukawa, Kenta*; Hasegawa, Kazuo; Iijima, Toru*; Iinuma, Hiromi*; Ishida, Katsuhiko*; Kawamura, Naritoshi*; et al.

Physical Review Accelerators and Beams (Internet), 21(5), p.050101_1 - 050101_6, 2018/05

 Times Cited Count:9 Percentile:10.69(Physics, Nuclear)

Muons have been accelerated by using a radio-frequency accelerator for the first time. Negative muonium atoms (Mu$$^{-}$$), which are bound states of positive muons and two electrons, are generated from through the electron capture process in an aluminum degrader. The generated Mu$$^{-}$$'s are initially electrostatically accelerated and injected into a radio-frequency quadrupole linac (RFQ). In the RFQ, the Mu$$^{-}$$'s are accelerated to 89 keV. The accelerated Mu$$^{-}$$'s are identified by momentum measurement and time of flight. This compact muon linac opens the door to various muon accelerator applications including particle physics measurements and the construction of a transmission muon microscope.

Journal Articles

Isotope-selective ionization utilizing field-free alignment of isotopologues using a switched nanosecond laser pulse

Akagi, Hiroshi*; Kumada, Takayuki; Otobe, Tomohito*; Itakura, Ryuji*; Hasegawa, Hirokazu*; Oshima, Yasuhiro*

Applied Physics B, 124(1), p.14_1 - 14_8, 2018/01

 Times Cited Count:1 Percentile:80.44(Optics)

We propose and numerically simulate a method of laser isotope separation based on field-free alignment of isotopologues, utilizing an intense switched nanosecond (ns) laser field which is slowly turned on and rapidly turned off at the peak with the falling time of 200 fs. The femtosecond (fs) laser induced alignment of molecules including a heavy atom is severely disturbed by ionization because of their small ionization potential. Our simulations for $$^I79$$Br and $$^I81$$Br isotopologues demonstrate that the switched ns laser field can make isotopologues well-aligned with the reduced ionization probability at the laser intensity which is an order-of-magnitude lower than a typical intensity for field-free alignment induced by a fs laser field.

Journal Articles

Dynamics of spallation during femtosecond laser ablation studied by time-resolved reflectivity with double pump pulses

Kumada, Takayuki; Otobe, Tomohito; Nishikino, Masaharu; Hasegawa, Noboru; Hayashi, Terutake*

Applied Physics Letters, 108(1), p.011102_1 - 011102_4, 2016/01


 Times Cited Count:7 Percentile:48.53(Physics, Applied)

The dynamics of photomechanical spallation during femtosecond laser ablation of fused silica was studied by time-resolved reflectivity with double pump pulses. Oscillation of reflectivity was caused by interference between the probe pulses reflected at the sample surface and the spallation layer, and was enhanced when the surface is irradiated with the second pump pulse within a time interval of several picoseconds after the first pump pulse. However, as the time-interval was increased, the oscillation amplitude decreased with an exponential decay time of 10 ps. The oscillation disappeared when the interval exceeded 20 ps. This result suggests that the formation time of the spallation layer is approximately 10 ps.

Journal Articles

Ion-track grafting of vinylbenzyl chloride into poly(ethylene-$$co$$-tetrafluoroethylene) films using different media

Nuryanthi, N.*; Yamaki, Tetsuya; Kitamura, Akane; Koshikawa, Hiroshi; Yoshimura, Kimio; Sawada, Shinichi; Hasegawa, Shin; Asano, Masaharu; Maekawa, Yasunari; Suzuki, Akihiro*; et al.

Transactions of the Materials Research Society of Japan, 40(4), p.359 - 362, 2015/12

The ion-track grafting of a vinylbenzyl chloride (VBC) into a poly(ethylene-co-tetrafluoroethylene) (ETFE) film is necessary for preparing nanostructured hydroxide-ion-conductive electrolyte membranes. A key for success here is to obtain as high graft levels as possible (for higher conductivity) in a smaller number of tracks (for improving the other membrane properties). To this end, therefore, the effect of the medium for the VBC grafting was investigated as part of our continuing effort to optimize the experimental conditions. A 25 $$mu$$m-thick ETFE film was irradiated in a vacuum chamber with 560 MeV $$^{129}$$Xe at different fluences, and then the grafting was performed by immersing the irradiated films in a 20vol% VBC monomer at 60$$^{circ}$$C. A medium was a mixture of water (H$$_{2}$$O) and isopropyl alcohol (iPrOH) at different volume ratios. The degree of grafting increased as the H$$_{2}$$O content became higher, and reached a maximum in pure H$$_{2}$$O. These results can be explained by considering the well-known Trommsdorff effect, in which poor solubility of the grafted polymer in polar media leads to an increased polymerization rate probably due to a lower termination rate.

Journal Articles

Overview on recent progress toward small specimen test technique

Wakai, Eiichi; Kikuchi, Takayuki; Kim, B.*; Kimura, Akihiko*; Nogami, Shuhei*; Hasegawa, Akira*; Nishimura, Arata*; Soldaini, M.*; Yamamoto, Michiyoshi*; Knaster, J.*

Fusion Engineering and Design, 98-99, p.2089 - 2093, 2015/10

 Times Cited Count:8 Percentile:26.14(Nuclear Science & Technology)

Journal Articles

Numerical analysis of organ doses delivered during computed tomography examinations using Japanese adult phantoms with the WAZA-ARI dosimetry system

Takahashi, Fumiaki; Sato, Kaoru; Endo, Akira; Ono, Koji*; Ban, Nobuhiko*; Hasegawa, Takayuki*; Katsunuma, Yasushi*; Yoshitake, Takayasu*; Kai, Michiaki*

Health Physics, 109(2), p.104 - 112, 2015/08

 Times Cited Count:4 Percentile:51.6(Environmental Sciences)

A dosimetry system, named WAZA-ARI, is developed to assess accurately radiation doses to persons from Computed Tomography (CT) examination patients in Japan. Organ doses were prepared to application to dose calculations in WAZA-ARI by numerical analyses using average adult Japanese human models with the Particle and Heavy Ion Transport code System (PHITS). Experimental studies clarified the radiation configuration on the table for some multi-detector row CT (MDCT) devices. Then, a source model in PHITS could specifically take into account for emissions of X-ray in each MDCT device based on the experiment results. Numerical analyses with PHITS revealed a concordance of organ doses with human body size. The organ doses by the JM phantoms were compared with data obtained using previously developed systems. In addition, the dose calculation in WAZA-ARI were verified with previously reported results by realistic NUBAS phantoms and radiation dose measurement using a physical Japanese model. The results implied that analyses using the Japanese phantoms and PHITS including source models can appropriately give organ dose data with consideration of the MDCT device and physiques of typical Japanese adults.

Journal Articles

Isotope-selective ionization utilizing field-free alignment of isotopologues with a train of femtosecond laser pulses

Akagi, Hiroshi; Kasajima, Tatsuya*; Kumada, Takayuki; Itakura, Ryuji; Yokoyama, Atsushi; Hasegawa, Hirokazu*; Oshima, Yasuhiro*

Physical Review A, 91(6), p.063416_1 - 063416_7, 2015/06

 Times Cited Count:6 Percentile:52.92(Optics)

We propose a strategy of isotope-selective ionization for a binary mixture of isotopologues of homonuclear diatomic molecules, utilizing field-free alignment with a train of femtosecond laser pulses. Field-free alignment can be achieved simultaneously for two isotopologues consisting of two atoms with the same atomic mass number $$alpha$$ or $$beta$$, utilizing a pulse train with their time interval of T$$_{com}$$ = $$beta$$ T($$alpha$$) = $$alpha$$ T($$beta$$), where T($$alpha$$) and T($$beta$$) are the rotational revival times of the isotopologues. We demonstrate experimentally that a train of four alignment pulses with their interval of T$$_{com}$$ ($$alpha$$ = 14, $$beta$$ = 15) creates transiently aligned $$^{14}$$N$$_{2}$$ and anti-aligned $$^{15}$$N$$_{2}$$ just before T$$_{com}$$/2 after the last pulse, and vice versa just after T$$_{com}$$/2. Highly isotope-selective N$$_{2}$$ ionization is achieved at these timings with another femtosecond laser pulse, which induces the non-resonant multiphoton ionization with the cross section remarkably depending on the angle between the molecular axis and the laser electric field direction. The ion yield ratio I($$^{15}$$N$$_{2}$$$$^{+}$$)/I($$^{14}$$N$$_{2}$$$$^{+}$$) ranges from 0.49 to 2.00, which is wider than the range obtained with single alignment pulse.

Journal Articles

WAZA-ARI; A Dose assessment system for patients in CT scan

Sato, Kaoru; Takahashi, Fumiaki; Endo, Akira; Ono, Koji*; Hasegawa, Takayuki*; Katsunuma, Yasushi*; Yoshitake, Takayasu*; Ban, Nobuhiko*; Kai, Michiaki*

RIST News, (58), p.25 - 32, 2015/01

The Japan Atomic Energy Agency (JAEA) are now developing WAZA-ARI for improvement of management of exposure doses due to CT examination under the joint research with the Oita University of Nursing and Health Sciences. The trial version of WAZA-ARI has been released on 21 December 2012. In trial version, users can perform dose assessment by using organ dose database based on the average adult Japanese male (JM-103) and female (JF-103) voxel phantoms and a 4 years old female voxel phantom (UFF4). The homepage of WAZA-ARI has been accessed over 1000 times per month and 28421 times by the end of September 2014. We are developing WAZA-ARI version 2 as the extension version of dose calculation functions of WAZA-ARI. WAZA-ARI version 2 will be released by the end of March 2015. In WAZA-ARI version 2. Users can upload dose calculation results to WAZA-ARI version 2 server, and utilize improvement of the dose management of patients and the optimization of CT scan conditions.

Journal Articles

Isotope-selective ionization utilizing molecular alignment and non-resonant multiphoton ionization

Akagi, Hiroshi; Kasajima, Tatsuya; Kumada, Takayuki; Itakura, Ryuji; Yokoyama, Atsushi; Hasegawa, Hirokazu*; Oshima, Yasuhiro*

Applied Physics B, 109(1), p.75 - 80, 2012/10

 Times Cited Count:14 Percentile:37.38(Optics)

We demonstrate a laser nitrogen isotope separation, which is based on field-free alignment and angular dependent ionization of $$^{14}$$N$$_{2}$$ and $$^{15}$$N$$_{2}$$ isotopomers. A linearly-polarized short laser pulse ($$lambda$$$$sim$$795 nm, $$Delta$$$$tau$$$$sim$$60 fs) creates rotational wave packets in the isotopomers, which periodically revive with different revival times as a result of different moments of inertia. Another linearly-polarized short laser pulse ($$lambda$$$$sim$$795 nm, $$Delta$$$$tau$$$$sim$$60 fs) ionizes one of the isotopomers selectively as a result of their different angular distributions. In the present experiments, the ion yield ratio $$R$$ [= $$I$$($$^{15}$$N$$_{2}$$$$^{+}$$)/$$I$$($$^{14}$$N$$_{2}$$$$^{+}$$)] can be changed in the range from 0.85 to 1.22, depending on the time delay between the two laser pulses.

Journal Articles

Progress in ECRF antenna development for JT-60SA

Kobayashi, Takayuki; Isayama, Akihiko; Hasegawa, Koichi; Suzuki, Sadaaki; Hiranai, Shinichi; Sato, Fumiaki; Wada, Kenji; Yokokura, Kenji; Shimono, Mitsugu; Sawahata, Masayuki; et al.

Fusion Engineering and Design, 86(6-8), p.763 - 767, 2011/10

 Times Cited Count:6 Percentile:47.96(Nuclear Science & Technology)

Progress of antenna development of the Electron Cyclotron Range of Frequency system for JT-60 SA is presented. Capability of pulse length of 100 s, which requires active cooling for mirrors, and flexibility of beam injection angles in both poloidal and toroidal directions are required for the antenna with high reliability. Mechanical and structural design works of the launcher (antenna and its support with steering structure) based on a linear motion antenna concept are in progress. The key component is a long-stroke bellows which enables to alter poloidal injection angle and a bellows which enables to alter toroidal injection angle. Using a newly fabricated mock-up of the steering structure, it was confirmed that the antenna was mechanically realized for poloidal and toroidal injection angle ranges of -10 to +45$$^{circ}$$ and -15 to +15$$^{circ}$$, respectively. Those angles are consistent with angles required in JT-60SA. The results of thermal and structural analyses are also presented.

Journal Articles

Progress of high-power and long-pulse ECRF system development in JT-60

Kobayashi, Takayuki; Isayama, Akihiko; Yokokura, Kenji; Shimono, Mitsugu; Hasegawa, Koichi; Sawahata, Masayuki; Suzuki, Sadaaki; Terakado, Masayuki; Hiranai, Shinichi; Sato, Fumiaki; et al.

Nuclear Fusion, 51(10), p.103037_1 - 103037_10, 2011/10

 Times Cited Count:15 Percentile:37.05(Physics, Fluids & Plasmas)

A new gyrotron operation technique to increase oscillation efficiency was developed on the JT 60 ECRF system. The electron pitch factor was optimized by controlling anode voltage within 0.1 s after the start of the operation. By applying this technique, the gyrotron output power of 1.5 MW for 4 s was recorded, for the first time. The reduced collector heat load at 1.5 MW operations was reduced by 20% and it will be acceptable for longer pulse operation. A new gyrotron with an improved mode converter was developed in order to demonstrate reduction of the stray radiation which had limited the pulse length. The stray radiation was reduced to 1/3 of that of the original gyrotron. A conditioning operation of the improved gyrotron is proceeding up to 31 s at 1 MW. These progresses significantly contribute to enhancing the high power and long pulse capability of the ECRF system toward JT 60SA.

Journal Articles

Effects of human model configuration in Monte Carlo calculations for organ doses from CT examinations

Takahashi, Fumiaki; Sato, Kaoru; Endo, Akira; Ono, Koji*; Yoshitake, Takayasu*; Hasegawa, Takayuki*; Katsunuma, Yasushi*; Ban, Nobuhiko*; Kai, Michiaki*

Progress in Nuclear Science and Technology (Internet), 2, p.153 - 159, 2011/10

Computed Tomography (CT) is one of the most useful tools for medical diagnosis, and is becoming a major source of medical exposure in developed countries. Appropriate radiation protection in CT examinations is emphasized by international organizations, such as the International Atomic Energy Agency (IAEA), because the patients receive higher radiation doses than in conventional radiography. Medical staffs can acquire dose information on the conditions of some CT examinations with available dosimetry systems, which had been already developed. These systems utilize datasets of organ and tissue doses, which were derived with Monte Carlo calculations. Methods in computational analyses, however, have been improved, since these calculations had been performed. Then, our new dosimetry system for CT examination, WAZA-ARI, is being developed to estimate radiation dose based upon the state-of-art numerical analyses. Our analysis adopts Particle and Heavy Ion Transport code System (PHITS) coupled with a voxel-type phantom, JM phantom, for the organ dose calculation. PHITS has advantageous to define the model of photon emission from X-ray tube in a CT device for radiation transport calculations. The physique and mass of organs for JM phantom are similar to those for average Japanese male adults. Since the goal of WAZA-ARI is to provide dosimetric information of arbitrary patient, it is important to evaluate uncertainty due to different configurations in human bodies between JM phantom and individual patients. For this purpose, the organ doses are calculated and compared for different human models; another Japanese male adult voxel phantom and the ICRP reference voxel phantom, which is constructed on the basis of Caucasian data.

Journal Articles

Development of a web-based CT dose calculator; WAZA-ARI

Ban, Nobuhiko*; Takahashi, Fumiaki; Sato, Kaoru; Endo, Akira; Ono, Koji*; Hasegawa, Takayuki*; Yoshitake, Takayasu*; Katsunuma, Yasushi*; Kai, Michiaki*

Radiation Protection Dosimetry, 147(1-2), p.333 - 337, 2011/09

 Times Cited Count:16 Percentile:17.24(Environmental Sciences)

A web-system of WAZA-ARI is being developed to assess radiation dose to a patient in a Computed Tomography (CT) examination. The databases of organ doses for WAZA-ARI were derived by the Japanese adult Male phantom (JM phantom) combined with the Particle and Heavy Ion Transport code System, PHITS. In the Monte Carlo simulation, the phantoms were irradiated with a 5 mm-thick fan-shaped photon beam, which was moved every 5 mm along the body axis from the upper leg to the top of head. The attenuation by the beam-shaping filter (bow-tie filter) was also taken into account here. The MIRD-type phantom was also applied to the calculations. The MIRD phantom sometimes showed step changes for organ doses, while smoother curves were obtained for JM phantom. The dose data by JM phantom were incorporated into the WAZA-ARI system, which has been implemented on a Linux server. With regard to the system implementation, the system has achieved a high degree of flexibility without commercial software.

Journal Articles

WAZA-ARI; Computational dosimetry system for X-ray CT examinations, 1; Radiation transport calculation for organ and tissue doses evaluation using JM phantom

Takahashi, Fumiaki; Sato, Kaoru; Endo, Akira; Ono, Koji*; Yoshitake, Takayasu*; Hasegawa, Takayuki*; Katsunuma, Yasushi*; Ban, Nobuhiko*; Kai, Michiaki*

Radiation Protection Dosimetry, 146(1-3), p.241 - 243, 2011/07

 Times Cited Count:14 Percentile:20.5(Environmental Sciences)

A web-system of WAZA-ARI is being developed to assess radiation dose to a patient in a Computed Tomography (CT) examination. WAZA-ARI utilizes a set of organ and tissue doses in a database for the dose assessment, according to the given resources with a consideration of the examination condition. The organ and tissue doses in the database have been derived with the Particle and Heavy Ion Transport code System, PHITS. Modeling of the patient was a significant issue in the radiation transport calculation. JM phantom, whose height (171 cm) and weight (65 kg) are near to those averaged over Japanese male adults, was incorporated to PHITS as a human model. Since JM phantom consisted of about 1 mm$$^{3}$$ size voxel, the shapes could be realistically reproduced even for small organs such as thyroid, adrenals. Masses of most organs could be also adjusted to the averaged values of Japanese male adults. In addition, our calculations introduced a new phantom without arms based upon JM phantom, because the patient usually puts arms toward the head direction in a torso examination. Some of organ doses calculated by JM phantom were compared with results, which were derived with a MIRD-type phantom. Differences could be seen in some organ doses between the phantoms, if photon attenuations in a shaping (Bow-tie) filter were taken into account to a source model in PHITS.

Journal Articles

WAZA-ARI; Computational dosimetry system for X-ray CT examinations, 2; Development of web-based system

Ban, Nobuhiko*; Takahashi, Fumiaki; Ono, Koji*; Hasegawa, Takayuki*; Yoshitake, Takayasu*; Katsunuma, Yasushi*; Sato, Kaoru; Endo, Akira; Kai, Michiaki*

Radiation Protection Dosimetry, 146(1-3), p.244 - 247, 2011/07

 Times Cited Count:14 Percentile:20.5(Environmental Sciences)

We are developing a web-based system, WAZA-ARI, for the dose calculation of patients undergoing X-ray CT examinations. Tissue doses were calculated in a Japanese adult male phantom (JM phantom) using a Monte Carlo code, PHITS, and the normalized dose coefficient data are stored as XML files. The system is implemented in Java on a Linux server running Apache Tomcat, which is accessed via a web browser over a network. Users are requested to choose scanning options and to input parameters in the data entry screen. The corresponding dose data are called upon input, and they are summed over the scan range specified by the user to estimate unit tissue doses. Tissue doses are computed based on the radiographic exposure (mAs), the beam pitch and air kerma at the beam center on the axis of rotation. Users can also use their own air kerma, CTDI vol and DLP values for the dose computation instead of the default setting. Although the dose coefficients are prepared for only limited CT scanner models currently, our system has achieved high usability and easy maintenance without commercial software. Possibility of further expansion for the practical application is also discussed.

103 (Records 1-20 displayed on this page)