Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 753

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

GPU-enabled ensemble data assimilation for mesh-refined lattice Boltzmann method

Hasegawa, Yuta; Idomura, Yasuhiro; Onodera, Naoyuki

EPJ Web of Conferences, 302, p.03005_1 - 03005_9, 2024/10

We implemented the ensemble data assimilation (DA) method, the local ensemble transform Kalman filter (LETKF), into the mesh-refined lattice Boltzmann method (LBM) for turbulent flows. Both the LETKF and the mesh-refined LBM were fully implemented on GPUs, so that they are efficiently computed on modern GPU-based supercomputers. We examined the DA accuracy against the flow around a cylinder. The result showed that our method enabled accurate DA with spatially- and temporarily-sparse observation data; the error of the assimilated velocity field with the observation interval of $$tau_K/2$$ and the observation resolution $$D/16$$ (1.56% of the total computational grids) was smaller than the amplitude of the observation noise, where $$tau_K$$ is the period of the K$'{a}$rm$'{a}$n vortex and $$D$$ is diameter of the square cylinder.

Journal Articles

Project plan of HTTR heat application test facility; Safety design and Safety analysis

Aoki, Takeshi; Hasegawa, Takeshi; Kurahayashi, Kaoru; Nomoto, Yasunobu; Shimizu, Atsushi; Sato, Hiroyuki; Sakaba, Nariaki

Proceedings of 11th International Topical Meeting on High Temperature Reactor Technology (HTR 2024), 6 Pages, 2024/10

Japan Atomic Energy Agency (JAEA) is planning to perform a test named HTTR heat application test coupling HTTR (High temperature engineering test reactor) and a hydrogen production plant. The present study reports results of the safety design and safety analysis for HTTR heat application test facility. As a safety design, safety classification of structures, systems, and components was defined in the test facility based on their safety functions. As a preliminary safety analysis, a thermal-hydraulic analysis was performed with RELAP5 code. The safety analysis revealed that newly identified events for HTTR heat application test facility except for the rupture of heat transfer tube of steam generator was enveloped by the licensing basis events in conventional HTTR. The preliminary analysis proved that the safety criteria is satisfied in the candidate of licensing basis event.

Journal Articles

Benchmarking GPU backend of longitudinal simulation code BLonD

Adachi, Kyosuke; Tamura, Fumihiko; Nomura, Masahiro; Shimada, Taihei; Miyakoshi, Ryosuke*; Okita, Hidefumi; Yoshii, Masahito*; Omori, Chihiro*; Seiya, Kiyomi*; Hara, Keigo*; et al.

Proceedings of 21st Annual Meeting of Particle Accelerator Society of Japan (Internet), p.543 - 546, 2024/10

no abstracts in English

Journal Articles

Circuit simulation model for the RF system of J-PARC RCS

Okita, Hidefumi; Tamura, Fumihiko; Yamamoto, Masanobu; Miyakoshi, Ryosuke*; Nomura, Masahiro; Shimada, Taihei; Yoshii, Masahito*; Omori, Chihiro*; Seiya, Kiyomi*; Hara, Keigo*; et al.

Proceedings of 21st Annual Meeting of Particle Accelerator Society of Japan (Internet), p.765 - 769, 2024/10

no abstracts in English

Journal Articles

Applying a deep generative model to mountain plot images

Nomura, Masahiro; Shimada, Taihei; Tamura, Fumihiko; Okita, Hidefumi; Miyakoshi, Ryosuke*; Seiya, Kiyomi*; Yoshii, Masahito*; Omori, Chihiro*; Hara, Keigo*; Hasegawa, Katsushi*; et al.

Proceedings of 21st Annual Meeting of Particle Accelerator Society of Japan (Internet), p.85 - 88, 2024/10

no abstracts in English

Journal Articles

Mitigation of cavity voltage jump due to high intensity beam extraction in J-PARC RCS

Tamura, Fumihiko; Sugiyama, Yasuyuki*; Okita, Hidefumi; Yamamoto, Masanobu; Yoshii, Masahito*; Omori, Chihiro*; Seiya, Kiyomi*; Nomura, Masahiro; Shimada, Taihei; Hasegawa, Katsushi*; et al.

Proceedings of 21st Annual Meeting of Particle Accelerator Society of Japan (Internet), p.774 - 776, 2024/10

The 3GeV RCS of J-PARC accelerates proton beams with a maximum beam intensity of 8e13 ppp, utilizing the features of magnetic alloy (MA) cavities. The beam is extracted in a single turn by kicker magnets, and immediately after the beam is extracted, a short voltage jump occurs in the cavity. This is due to a delay in the voltage control feedback, which takes a certain amount of time to respond to the step-like decrease of beam current upon single-turn extraction. In a wideband (Q=2) MA cavity, this response delay is observed as a voltage jump. This voltage jump can cause damage to the cavity system if the voltage at the time of extraction is high. Therefore, we prepared a logic to suppress the output synchronously with the beam extraction as a function of the LLRF control system. The details of the function and test results are reported.

Journal Articles

R&D status of digital technology on inverse estimation of radioactive source distributions and related source countermeasures; Fast Digital Twin Tech. in Decommissioning Field: 3D-ADRES-Indoor FrontEnd

Machida, Masahiko; Yamada, Susumu; Kim, M.; Tanaka, Satoshi*; Tobita, Yasuhiro*; Iwata, Ayako*; Aoki, Yuto; Aoki, Kazuhisa; Yanagisawa, Kenichi*; Yamaguchi, Takashi; et al.

RIST News, (70), p.3 - 22, 2024/09

Inside the Fukushima Daiichi Nuclear Power Plant (1F), there are many locations with high radiation levels due to contamination by radioactive materials that leaked from the reactor. These pose a significant obstacle to the smooth progress of decommissioning work. To help solve this issue, the Japan Atomic Energy Agency (JAEA), under a subsidy from the Ministry of Economy, Trade, and Industry's decommissioning and contaminated water management project, is conducting research and development on digital technologies to improve the radiation environment inside the decommissioning site. This project, titled "Development of Technology to Improve the Environment Inside Reactor Buildings (Enhancing Digital Technology for Environment and Source Distribution to Reduce Radiation Exposure)," began in April of FY 2023. In this project, the aim is to develop three interconnected systems: FrontEnd, Pro, and BackEnd. The FrontEnd system, based on the previously developed 3D-ADRES-Indoor (prototype) from FY 2021-2022, will be upgraded to a high-speed digital twin technology usable on-site. The Pro system will carry out detailed analysis in rooms such as the new office building at 1F, while the BackEnd system will serve as a database to centrally manage the collected and analyzed data. This report focuses on the FrontEnd system, which will be used on-site. After point cloud measurement, the system will quickly create a 3D mesh model, estimate the radiation source from dose rate measurements, and refine the position and intensity of the estimated source using recalculation techniques (re-observation instructions and re-estimation). The results of verification tests conducted on Unit 5 are also presented. Furthermore, the report briefly discusses the future research and development plans for this project.

Journal Articles

Investigation of adsorption mechanism of Mo(VI) by baker's yeast and applicability to the uranium liquid waste treatment process

Arai, Yoichi; Hasegawa, Kenta; Watanabe, So; Watanabe, Masayuki; Minowa, Kazuki*; Matsuura, Haruaki*; Hagura, Naoto*; Katsuki, Kenta*; Arai, Tsuyoshi*; Konishi, Yasuhiro*

Journal of Radioanalytical and Nuclear Chemistry, 333(7), p.3585 - 3593, 2024/07

 Times Cited Count:1 Percentile:41.04(Chemistry, Analytical)

Journal Articles

Structure of drifting snow simulated by Lagrangian particle dispersion model coupled with large-eddy simulation using the lattice Boltzmann method

Watanabe, Tsutomu*; Ishikawa, Shuhei*; Kawashima, Masayuki*; Shimoyama, Ko*; Onodera, Naoyuki; Hasegawa, Yuta; Inagaki, Atsushi*

Journal of Wind Engineering and Industrial Aerodynamics, 250, p.105783_1 - 105783_17, 2024/07

 Times Cited Count:1 Percentile:0.00(Engineering, Civil)

This paper presents simulations of drifting snow using a Lagrangian particle dispersion model coupled with a large-eddy simulation code. The model accurately replicates observed features such as mass transport rate dependency on flow velocity and variations in particle size distribution. It also shows that the saltation layer height increases monotonically with flow velocity, contrary to conventional estimates. Additionally, the study confirms the transition from saltation to suspension near the estimated saltation layer height and finds that dense snow streamers are linked to small-scale low-speed streaks in near-surface flows.

JAEA Reports

Differential pressure rise event for filters of HTTR primary helium gas circulators, 2; Investigation of filter deposits and recurrence prevention measures

Nemoto, Takahiro; Fujiwara, Yusuke; Arakawa, Ryoki; Choyama, Yuya; Nagasumi, Satoru; Hasegawa, Toshinari; Yokoyama, Keisuke; Watanabe, Masashi; Onishi, Takashi; Kawamoto, Taiki; et al.

JAEA-Technology 2024-003, 17 Pages, 2024/06

JAEA-Technology-2024-003.pdf:1.91MB

In order to investigate the cause of the increase in differential pressure in the primary helium circulator filter that occurred during the RS-14 cycle, a clogged filter was investigated. As a result of the investigation, deposits caused by silicone oil were confirmed on the surface of the filter element. These results revealed that the cause of filter clogging was silicone oil mixed into the primary system due to performance deterioration of the charcoal filter in the gas circulator of primary helium purification system. As a measure to prevent the recurrence of this event, in addition to the conventional management based on operating hours for replacing of charcoal filter in the gas circulator of primary helium purification system, we have established a new replacement plan for every three years.

Journal Articles

Data assimilation experiment of flow around three-dimensional square cylinder using LBM-LETKF with small number of observation points

Hasegawa, Yuta; Idomura, Yasuhiro; Onodera, Naoyuki

Keisan Kogaku Koenkai Rombunshu (CD-ROM), 29, 4 Pages, 2024/06

We implemented the ensemble data assimilation (DA) of turbulence by using the mesh-refined lattice Boltzmann method with the local ensemble transform Kalman filter (LBM-LETKF). We examined the accuracy of the data assimilation against a turbulent flow around a three-dimensional square cylinder. The DA error was comparable or less than the observation noise when the observation interval was a half of the period of the K$'{a}$rm$'{a}$n vortex street and the number of observation points was 0.195% of computational grid points. The LBM-LETKF enables DA of turbulence with spatially- and temporally- sparse observations.

Journal Articles

Investigation of deposits on filter element of primary gas circulators in HTTR

Hasegawa, Toshinari; Nagasumi, Satoru; Nemoto, Takahiro; Nakajima, Kunihiro; Yokoyama, Keisuke; Fujiwara, Yusuke; Arakawa, Ryoki; Iigaki, Kazuhiko; Inoi, Hiroyuki; Kawamoto, Taiki

Proceedings of 2024 International Congress on Advanced in Nuclear Power Plants (ICAPP 2024) (Internet), 10 Pages, 2024/06

The filter element of the primary gas circulators (PGC) in High Temperature engineering Test Reactor (HTTR) and its deposits were investigated by Scanning Electron Microscope (SEM) observation and Energy Dispersive X-ray spectroscopy (EDX) analysis to find the cause of the increase of the filter differential pressure during the operation in 2021. SEM observation showed that the clumpy deposits and fibrous deposits smaller than the filtration pore size and the rod-shaped deposits larger than the pore size were present on the filter element. EDX analysis showed that the clumpy deposits and fibrous deposits could include silicone oil in the primary helium purification system (PHPS) gas circulators and that the rod-shaped deposits were thermal insulators inside of the co-axial double pipes in the primary cooling system. It is considered that silicone oil leaked from the PHPS gas circulators due to deterioration in the absorption performance of the activated charcoal filter. Next, it could be vaporized and reach PGC's filter element after passing through the reactor core. Since those deposits including silicone oil were present over the entire surface of the filter element, the filter differential pressure could be increased due to a reduction in the pore size and a rise in its flow resistance. The thermal insulator was unrelated to filter clogging because it was present mainly in the lower part of the filter element. Therefore, silicone oil could increase the filter differential pressure, and the graphite powder, which is the cause of the previous issue was unrelated.

Journal Articles

Optimization in granulation conditions for adsorbent of extraction chromatography

Hasegawa, Kenta; Goto, Ichiro*; Miyazaki, Yasunori; Ambai, Hiromu; Watanabe, So; Watanabe, Masayuki; Sano, Yuichi; Takeuchi, Masayuki

Mechanical Engineering Journal (Internet), 11(2), p.23-00407_1 - 23-00407_8, 2024/04

Journal Articles

Overview of development program for engineering scale extraction chromatography MA(III) recovery system

Watanabe, So; Takahatake, Yoko; Hasegawa, Kenta; Goto, Ichiro*; Miyazaki, Yasunori; Watanabe, Masayuki; Sano, Yuichi; Takeuchi, Masayuki

Mechanical Engineering Journal (Internet), 11(2), p.23-00461_1 - 23-00461_10, 2024/04

Journal Articles

Effectiveness of fused LASSO for prediction of distribution of radioactive materials in reactor buildings

Yamada, Susumu; Yoshida, Toru*; Hasegawa, Yukihiro*; Machida, Masahiko

Proceedings of Waste Management Symposia 2024 (WM2024) (Internet), 15 Pages, 2024/03

In order to safely carry out the decommission of reactor buildings, it is extremely important to identify the radiation source distribution. It has been reported that when the structural model of the building is constructed by uniform cells, the source distribution can be estimated from the measured air dose rates by minimizing an evaluation function using the Least Absolute Shrinkage and Selection Operator (LASSO). Moreover, if cells are non-uniform, we can estimate the distribution using the fused LASSO which minimizes the evaluation function that takes account of the connectivity between the adjacent cells. However, when a group of some cells is considered disconnected from the surrounding ones due to the precision of the measured structural data, the concentration of the group can be singularly high. Therefore, in order to avoid the problem, we propose a new evaluation function that can prevent the singularity. We estimated the distribution for the test model using the proposed evaluation function and confirmed the validity of the function. Moreover, we succeeded in estimating the source distribution in the pool canal circulation system room in JMTR in the Japan Atomic Energy Agency by the fused LASSO for the new function more accurately than previous analysis.

Journal Articles

Improvement of the longitudinal phase space tomography at the J-PARC synchrotrons

Okita, Hidefumi; Tamura, Fumihiko; Yamamoto, Masanobu; Nomura, Masahiro; Shimada, Taihei; Saha, P. K.; Yoshii, Masahito*; Omori, Chihiro*; Sugiyama, Yasuyuki*; Hasegawa, Katsushi*; et al.

Journal of Physics; Conference Series, 2687(7), p.072005_1 - 072005_7, 2024/01

 Times Cited Count:0

Longitudinal phase space tomography is an effective measurement tool for acquiring the longitudinal phase space distribution. For the J-PARC synchrotrons, tomography, which can take into account the beam dynamics such as longitudinal space charge effect and nonlinearity, is desired, as the beam power increases. In this study, for the J-PARC synchrotron, the CERN's tomography, which employs the hybrid algorithm that can consider the beam dynamics for reconstruction, is introduced and benchmarked. The benchmark results show that the CERN's tomography has the ability to measure the longitudinal phase space distribution accurately, in the high-power beam operation at the J-PARC synchrotrons.

JAEA Reports

Structural investigation of simulated waste glass surface drained in operation confirmation test of 3rd TVF glass melter

Nagai, Takayuki; Hasegawa, Takehiko*

JAEA-Research 2023-008, 41 Pages, 2023/12

JAEA-Research-2023-008.pdf:7.52MB

To reduce the risks posed by stored the high-level radioactive liquid waste (HAW), Tokai Vitrification Facility (TVF) is working to produce the HAW into vitrified bodies. With the aim of steady vitrification of HAW in TVF, the vitrification technology section has manufactured a new 3rd melter with an improved bottom structure and is working to verify the performance of this melter. In this study, solidified glass samples were taken from simulated vitrified bodies produced by flowing molten glass during the bottom drain-out test in the operation confirmation of the TVF 3rd melter. And the properties of the surface layer and fracture surface of the vitrified bodies were evaluated by using Raman spectroscopy, synchrotron radiation XAFS measurement, and laser ablation inductively coupled plasma atomic emission spectroscopy (LA ICP-AES) analysis. As a result of measuring the surface layer and fracture surface of the solidified samples produced on an actual scale, a slight difference was confirmed between the properties of the surface layer and those of the fracture surface. Since the chemical composition of these simulated vitrified bodies does not contain platinum group elements, it is expected that the glass structure of solidified glass samples is different from that of the actual vitrified body. However, this sample measuring was a valuable opportunity to evaluate samples produced by using the direct energized joule heating method. The properties of cullet used the operation confirmation of the TVF 3rd melter and the cullet of another production lot were measured and analyzed in the same manner under the measuring conditions of solidified glass samples. As a result, it was confirmed that cullet with different producing histories have different glass structures even with the same chemical composition, and that differences in glass structures remain in the glass samples after melting these cullet.

Journal Articles

Application of machine learning to spattering phenomena in laser cutting

Kusumoto, Toshiyuki*; Saruta, Koichi; Naoe, Takashi; Teshigawara, Makoto; Futakawa, Masatoshi; Hasegawa, Kazuo*; Tsuboi, Akihiko

Jikken Rikigaku, 23(4), p.310 - 315, 2023/12

Reducing spatter, i.e., melt droplets flown out of the melt pool, is one of the critical issues when laser cutting is employed as a machining tool for radioactive wastes because the ejected droplets can lead to radioactive contamination with potential human exposure. The spattering phenomena are complicated processes that involve multiple physical phenomena, causing difficulty in the determination of laser parameters to minimize the amount of spatter. Here we observe the spatter ejected from 316L stainless steel plates using a high-speed camera and apply a machine learning technique to these captured images on the basis of three distinctive behaviors appeared at specific time intervals of the process of spattering phenomena: (I) a vapor, (II) a liquid film and breakup into droplets, and (III) a liquid capillary. The numerical model established through the machine learning technique predicts the spattering phenomena with an accuracy of 89% and can be used to determine the laser power and beam diameter that reduce the spatter eruption during laser irradiation.

Journal Articles

Continuous data assimilation of large eddy simulation by lattice Boltzmann method and local ensemble transform Kalman filter (LBM-LETKF)

Hasegawa, Yuta; Onodera, Naoyuki; Asahi, Yuichi; Ina, Takuya; Imamura, Toshiyuki*; Idomura, Yasuhiro

Fluid Dynamics Research, 55(6), p.065501_1 - 065501_25, 2023/11

 Times Cited Count:1 Percentile:0.00(Mechanics)

We investigate the applicability of the data assimilation (DA) to large eddy simulations (LESs) based on the lattice Boltzmann method (LBM). We carry out the observing system simulation experiment of a two-dimensional (2D) forced isotropic turbulence, and examine the DA accuracy of the nudging and the local ensemble transform Kalman filter (LETKF) with spatially sparse and noisy observation data of flow fields. The advantage of the LETKF is that it does not require computing spatial interpolation and/or an inverse problem between the macroscopic variables (the density and the pressure) and the velocity distribution function of the LBM, while the nudging introduces additional models for them. The numerical experiments with $$256times256$$ grids and 10% observation noise in the velocity showed that the root mean square error of the velocity in the LETKF with $$8times 8$$ observation points ($$sim 0.1%$$ of the total grids) and 64 ensemble members becomes smaller than the observation noise, while the nudging requires an order of magnitude larger number of observation points to achieve the same accuracy. Another advantage of the LETKF is that it well keeps the amplitude of the energy spectrum, while only the phase error becomes larger with more sparse observation. From these results, it was shown that the LETKF enables robust and accurate DA for the 2D LBM with sparse and noisy observation data.

Journal Articles

Consideration of high intensity single bunch acceleration in J-PARC RCS

Tamura, Fumihiko; Okita, Hidefumi; Hotchi, Hideaki*; Saha, P. K.; Meigo, Shinichiro; Yoshii, Masahito*; Omori, Chihiro*; Yamamoto, Masanobu; Seiya, Kiyomi*; Sugiyama, Yasuyuki*; et al.

Proceedings of 20th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.64 - 68, 2023/11

The J-PARC 3GeV synchrotron (RCS) provides high intensity proton beams to the Materials and Life Science Experimental Facility (MLF) and the Main Ring (MR). The harmonic number (h) of the RCS is 2 and the RCS normally accelerates two bunches. For some experiments at the MLF, a single bunch is preferred. In this case, one of the rf bucket is filled with protons and the other is empty. Therefore the beam intensity is halved. If the RCS can accelerate with h=1, the intensity per bunch can be doubled, enabling to provide single bunch beams to the MLF with the maximum intensity. This possibly increases the MR beam power by injecting high intensity single bunches eight times. In this presentation, we report mainly on the consideration of h=1 acceleration in the RCS by longitudinal simulations.

753 (Records 1-20 displayed on this page)