Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Ma, F.; Kopecky, S.*; Alaerts, G.*; 原田 秀郎; Heyse, J.*; 北谷 文人; Noguere, G.*; Paradela, C.*; alamon, L.*; Schillebeeckx, P.*; et al.
Journal of Analytical Atomic Spectrometry, 35(3), p.478 - 488, 2020/03
被引用回数:4 パーセンタイル:35.23(Chemistry, Analytical)The use of Neutron Resonance Transmission Analysis to characterize homogeneous samples not fulfilling good transmission geometry conditions is discussed. Analytical expressions for such samples have been derived and implemented in the resonance shape analysis code REFIT. They were validated by experiments at the time-of-flight facility GELINA using a set of metallic natural copper samples. The expressions were used to derive sample characteristics by a least squares adjustment to experimental transmission data. In addition, the resonance parameters of Cu for energies below 6 keV, which are reported in the literature and recommended in evaluated data libraries, were verified. This research was implemented under the subsidiary for nuclear security promotion of MEXT.
土屋 晴文; Ma, F.; 北谷 文人; Paradella, C.*; Heyse, J.*; Kopecky, S.*; Schillebeeckx, P.*
Proceedings of 41st ESARDA Annual Meeting (Internet), p.374 - 377, 2019/05
From a viewpoint of nuclear safeguards and nuclear security, non-destructive assay (NDA) techniques are needed to quantify special nuclear materials (SNMs) in nuclear fuels such as spent fuels and fuel debris. Neutron Resonance Transmission Analysis (NRTA) is an NDA technique and it measures the amount of U isotopes in a UO sample within 1% accuracy and Pu isotopes in a PuO sample within 5% accuracy. However, NRTA measurements done so far were mainly applied to homogeneous samples with a constant thickness. Spent fuel and especially debris have irregular shapes that affect the NRTA measurements. In order to investigate the influence of irregular-shaped samples, NRTA experiments were done with a copper bar sample with different rotation angles with respect to neutron beams, at a neutron Time-Of-Flight (TOF) facility GELINA (Belgium). Analytical models for irregular shaped samples proposed by Harada et al. (JNST, 2015) were applied to the experimental data. It has been found that the experimental data can be well reproduced by the proposed models. In this presentation, we report how analytical models are applied to a real NRTA experiment with a Cu bar sample and discuss a future prospect of a compact NRTA system for SNM quantification. This research was implemented under the subsidiary for nuclear security promotion of MEXT.
藤 暢輔; 大図 章; 土屋 晴文; 古高 和禎; 北谷 文人; 米田 政夫; 前田 亮; 小泉 光生; Heyse, J.*; Paradela, C.*; et al.
Proceedings of INMM 59th Annual Meeting (Internet), 9 Pages, 2018/07
Nuclear material accountancy is of fundamental importance for nuclear safeguards and security. However, to the best of our knowledge, there is no established technique that enables us to accurately determine the amount of Special Nuclear Materials (SNM) and Minor Actinides (MA) in high radioactive nuclear materials. Japan Atomic Energy Agency (JAEA) and the Joint Research Centre (JRC) of the European Commission Collaboration Action Sheet-7 started in 2015. The purpose of this project is to develop an innovative non-destructive analysis (NDA) system using a D-T pulsed neutron source. Active neutron NDA techniques, namely Differential Die-Away Analysis (DDA), Prompt Gamma-ray Analysis (PGA), Neutron Resonance Capture Analysis (NRCA), Neutron Resonance Transmission Analysis (NRTA) and Delayed Gamma-ray Analysis (DGA) have been studied and developed. The different methods can provide complementary information which is particularly useful for quantification of SNM and MA in high radioactive nuclear materials. The second phase of the project has started. In the second phase, we will continue to conduct additional research to improve the methodology and develop an integrated NDA system. This presentation gives an overview of the project and the NDA system and reports the recent results. This research was implemented under the subsidiary for nuclear security promotion of MEXT.
土屋 晴文; 北谷 文人; 藤 暢輔; Paradela, C.*; Heyse, J.*; Kopecky, S.*; Schillebeeckx, P.*
Proceedings of INMM 59th Annual Meeting (Internet), 6 Pages, 2018/07
In fields of nuclear safeguards and nuclear security, non-destructive assay (NDA) techniques are needed in order to quantify special nuclear materials (SNMs) in nuclear fuels. Among those techniques, active NDA ones would be preferable to passive ones. One candidate of active NDA techniques is neutron resonance transmission analysis (NRTA). In fact, experiments done at GELINA have shown that NRTA has high potential enough to quantify SNMs in complex materials. Currently, such a NRTA system requires a large electron accelerator facility to generate intense neutron sources. In other words, it is very difficult to perform NRTA at various facilities that need to measure SNMs. Thus, downsizing a NRTA system would be one solution of its difficulty. In order to realize a compact NRTA system, we develop a prototype with a D-T neutron generator that has a pulse width of 10 s. For this aim, numerical calculations to optimize the compact NRTA system were done. In addition, NRTA measurements with simulated fuel pins were made at neutron time-of-flight facilities such as GELINA. In this presentation, we present results of the numerical calculations and the experimental results. On the basis of those results we discuss a future prospect of a compact NRTA system that would be applicable to SNM quantification. This research was implemented under the subsidiary for nuclear security promotion of MEXT.
Paradela, C.*; Heyse, J.*; Kopecky, S.*; Schillebeeckx, P.*; 原田 秀郎; 北谷 文人; 小泉 光生; 土屋 晴文
EPJ Web of Conferences, 146, p.09002_1 - 09002_4, 2017/09
被引用回数:10 パーセンタイル:97.64(Nuclear Science & Technology)Neutron-induced reactions can be used to study the properties of nuclear materials in the field of nuclear safeguards and security. The elemental and isotopic composition of these materials can be determined by using the presence of resonance structures in the reaction cross sections as fingerprints. This idea is the basis of two non-destructive analytical techniques which have been developed at the GELINA neutron time-of-flight facility of the JRC-IRMM: Neutron Resonance Capture Analysis (NRCA) and Neutron Resonance Transmission Analysis (NRTA). A full quantitative validation of the NRTA technique was obtained by determining the areal densities of enriched reference samples used for safeguards applications with an accuracy better than 1%. Moreover, a combination of NRTA and NRCA has been proposed for the characterisation of particle-like debris of melted fuel formed in severe nuclear accidents. In order to deal with the problems due to the diversity in shape and size of these samples and the presence of strong absorbing matrix materials, new capabilities have been implemented in the resonance shape analysis code REFIT. They have been validated by performing a blind test in which the elemental abundance of a combined sample composed of unknown quantities of materials such as cobalt, tungsten, rhodium or gold was determined with accuracies better than 2%.
小泉 光生; Rossi, F.; Rodriguez, D.; 高峰 潤; 瀬谷 道夫; Bogucarska, T.*; Crochemore, J.-M.*; Varasano, G.*; Abbas, K.*; Pedersen, B.*; et al.
EPJ Web of Conferences, 146, p.09018_1 - 09018_4, 2017/09
被引用回数:3 パーセンタイル:84.80(Nuclear Science & Technology)Along with the global increase of applications using nuclear materials (NM), the requirements to nuclear security and safeguards for the development of effective characterization methods are growing. Mass verification of NM of low radioactivity is performed using passive non-destructive analysis (NDA) techniques whereas destructive analysis (DA) techniques are applied for accurate analysis of nuclide composition. In addition to the characterization by passive NDA, a sample can be further characterized by active NDA techniques. An active neutron NDA system equipped with a pulsed neutron generator is currently under development for studies of NDA methods. Among the methods DGS uses the detection of decay -rays from fission products (FP) to determine ratios of fissile nuclides present in the sample. A proper evaluation of such -ray spectra requires integration of nuclear data such as fission cross-sections, fission yields, half-lives, decay chain patterns, and decay -ray emission probabilities. The development of the DGS technique includes experimental verification of some nuclear data of fissile materials, as well as development of the device. This presentation will be a brief introduction of the active neutron NDA project and an explanation of the DGS development program.
小泉 光生; Rossi, F.; Rodriguez, D.; 高峰 潤; 瀬谷 道夫; Bogucarska, T.*; Crochemore, J.-M.*; Varasano, G.*; Abbas, K.*; Pedersen, B.*; et al.
EUR-28795-EN (Internet), p.868 - 872, 2017/00
Under the collaboration between the Japan Atomic Energy Agency (JAEA) and European Commissions' Joint Research Center (EC-JRC), development of four active neutron-interrogation non-destructive assay methods for nuclear non-proliferation and safeguards are in progress. The techniques are differential die-away analysis, delayed gamma-ray analysis (DGA), neutron resonance transmission analysis, and prompt gamma-ray analysis. Information obtained by each method is used complementarily to characterize a sample. DGA utilizes moderated pulsed neutrons from a D-T neutron generator to induce fission reaction of nuclear materials. Delayed gamma rays from the fission products (FP) are measured to determine the ratios of fissile nuclides (e.g. U, and Pu) in the sample. Experimental studies of the DGA method are in progress with the Pulsed Neutron Interrogation Test Assembly (PUNITA) in EC-JRC Ispra. Here we present an overview of the study plan of these DGA experiments along with the latest results. This research was implemented under the subsidiary for nuclear security promotion of MEXT.
藤 暢輔; 大図 章; 土屋 晴文; 古高 和禎; 北谷 文人; 米田 政夫; 前田 亮; 呉田 昌俊; 小泉 光生; 瀬谷 道夫; et al.
EUR-28795-EN (Internet), p.684 - 693, 2017/00
In 2015, Japan Atomic Energy Agency (JAEA) and the Joint Research Centre (JRC) of the European Commission collaboration started to develop an active neutron non-destructive assay system for nuclear nonproliferation and nuclear security. To the best of our knowledge, no adequate technique exists that allows us to determine the amount of special nuclear materials and minor actinides in high radioactive nuclear materials, such as spent fuel, transuranic waste, etc. The collaboration aims at contributing to the establishment of an innovative NDA system using a D-T pulsed neutron source for various applications. We utilize several active neutron NDA techniques, namely Differential Die-Away Analysis (DDA), Prompt Gamma-ray Analysis (PGA), Neutron Resonance Capture Analysis (NRCA), Neutron Resonance Transmission Analysis (NRTA) and Delayed Gamma Spectroscopy (DGS). All of these techniques have advantages and disadvantages. The different methods can provide complementary information which is particularly useful for nuclear nonproliferation and nuclear security. In this project, we have developed a combined NDA system, which enables the measurements of DDA and PGA, at NUclear fuel Cycle safety Engineering research Facility (NUCEF) in JAEA. In this presentation, we will introduce our project and report the recent progress of developments, especially in NRTA, DDA and PGA.
小泉 光生; 土屋 晴文; 北谷 文人; 原田 秀郎; Heyse, J.*; Kopecky, S.*; Mondelaers, W.*; Paradela, C.*; Schillebeeckx, P.*
Nuclear Instruments and Methods in Physics Research A, 837, p.153 - 160, 2016/11
被引用回数:2 パーセンタイル:18.60(Instruments & Instrumentation)Neutron Resonance Densitometry (NRD) has been proposed as a non-destructive analytical method for quantifying Special Nuclear Material (SNM) in the rock- and particle-like debris that is to be removed from the Fukushima Daiichi Nuclear Power Plant. The method is based on Neutron Resonance Transmission Analysis (NRTA) and Neutron Resonance Capture Analysis combined with Prompt Gamma Ray Analysis (NRCA/PGA). Although quantification of SNM will predominantly rely on NRTA, this will be hampered by the presence of strong neutron-absorbing matrix materials, in particular B. Results obtained with NRCA/PGA are used to improve the interpretation of NRTA data. Prompt -rays originating from the B(n, ) reaction are used to assess the amount of B. The 478 keV -rays from B, however, need to be measured under a high-radiation environment, especially from Cs. In order to meet this requirement, we have developed a well-shaped -ray spectrometer consisting of a cylindrical and four rectangular cuboid LaBr scintillators, and a fast data acquisition system.
小泉 光生; Heyse, J.*; Mondelaers, W.*; Paradela, C.*; Pedersen, B.*; Schillebeeckx, P.*; 瀬谷 道夫; Rodriguez, D.; 高峰 潤
核物質管理学会(INMM)日本支部第36回年次大会論文集(インターネット), 6 Pages, 2015/12
核分裂生成物の構成(分布)は、元となる核分裂性核種と照射中性子エネルギーにより異なってくる。それゆえ、核分裂生成物収率の違いによる遅発線(DG)スペクトルの違いから、核分裂性核種(U, Pu及びPu)の比が求められる。このDGS法プロジェクトは、核データの確認と改良を行いつつ実施する測定システムに関する研究開発である。実験に関しては、中性子源と核物質が取り扱えるITU/Ispra(イタリア), IRMM(ベルギー),京都大学研究用原子炉(熊取)などの施設を用いて実施する予定である。本発表では、現在計画しているDGS法の開発実験について報告する。
土屋 晴文; 原田 秀郎; 小泉 光生; 北谷 文人; 呉田 昌俊; Becker, B.*; Kopecky, S.*; Heyse, J.*; Paradela, C.*; Mondelaers, W.*; et al.
核物質管理学会(INMM)日本支部第36回年次大会論文集(インターネット), 9 Pages, 2015/12
粒子状の溶融燃料デブリに含まれるウランやプルトニウム同位体を非破壊で定量することを目的に、中性子共鳴濃度分析法(NRD)の技術開発を進めてきた。NRDは、中性子共鳴透過分析法(NRTA)に中性子共鳴捕獲線分析法(NRCA)、あるいは即発線分析法(PGA)を組み合わせた技術である。NRDにおけるNRCA/PGAの役割は、主にCsによる高放射線場においてデブリ中の原子炉や建屋の構造材、ボロンなどの不純物を同定することである。これを実現するため、LaBr結晶を用いた新型の線検出器やそれ専用の遮蔽体を開発した。これらの線検出器や遮蔽体を用いて、ベルギーの中性子飛行時間施設GELINAにおいて公開デモ実験を実施した結果、第三者によってブラックボックス内に密封された試料(Hf, Gd, Ni)を同定することに成功した。本発表では、開発した線検出器の設計概念と測定原理、及びNRCAデモ実験結果について報告する。
北谷 文人; 原田 秀郎; 小泉 光生; 土屋 晴文; 呉田 昌俊; Becker, B.*; Kopecky, S.*; Heyse, J.*; Paradela, C.*; Mondelaers, W.*; et al.
核物質管理学会(INMM)日本支部第36回年次大会論文集(インターネット), 9 Pages, 2015/12
平成24年度から平成26年度にかけて、粒子状の溶融燃料デブリに含まれるウランやプルトニウム同位体を非破壊で定量する技術として、中性子共鳴濃度分析法(NRD)の開発を進めてきた。NRDは、中性子共鳴透過分析法(NRTA)と中性子共鳴捕獲線分析法(NRCA)あるいは即発線分析法(PGA)を組み合わせた技術である。NRDにおけるNRTAの役割は、溶融燃料デブリ中の核燃料物質(U, Pu等)の同位体を定量することである。この目的のために飛行時間法(Time of Flight: TOF)を利用した中性子吸収測定を実施する。これについて。ベルギーの中性子飛行時間施設GELINAにて性能評価デモ実験を実施した。その結果、Au, W, Rh, Nb, Cu. Co, Mn, Bをランダムに選択して、封をされたブラックボックス内の試料を定量することに成功した。本発表では、開発したNRTAの測定原理を述べ、実施したデモ実験の詳細を発表する。
土屋 晴文; 小泉 光生; 北谷 文人; 呉田 昌俊; 原田 秀郎; 瀬谷 道夫; Heyse, J.*; Kopecky, S.*; Mondelaers, W.*; Paradela, C.*; et al.
Proceedings of 37th ESARDA Annual Meeting (Internet), p.846 - 851, 2015/08
中性子の共鳴反応を利用した分析手法に、中性子共鳴透過分析法(NRTA)がある。本技術を活用してMA混入核燃料に含まれているウランやプルトニウムを検出・定量するアクティブ中性子非破壊分析法を開発している。さらに、本手法をMA混入核燃料のみならず、高放射線場の中にあるさまざまな物質の定量に適用することを目指している。これまで粒子状の燃料デブリへの適用を目的として、われわれが開発してきた中性子共鳴濃度分析法(NRD)で得た知見を本技術開発に活かす。NRTAにより、透過中性子スペクトルの解析を通じてウランやプルトニウムを同定・定量する。本発表では、NRTAの基礎を紹介するとともに、開発するアクティブ中性子を用いた非破壊測定手法の中でのNRTAの役割を説明する。その上で、NRDの開発で得た知見を紹介するとともに、本技術開発の中でのNRTAの今後の検討項目について議論する。
小泉 光生; 土屋 晴文; 北谷 文人; 呉田 昌俊; 瀬谷 道夫; 原田 秀郎; Heyse, J.*; Kopecky, S.*; Mondelaers, W.*; Paradela, C.*; et al.
Proceedings of 37th ESARDA Annual Meeting (Internet), p.852 - 858, 2015/08
Active NDA techniques will draw out more information on the sample objects, in comparison with passive NDA techniques. Elementary particles (such as photons and neutrons) are used to induce nuclear reactions in the sample objects. The materials in the objects are deduced from the measured particles coming out of them. A new development program of active neutron NDA technologies has been started for detection/measurement of nuclear materials using a pulsed neutron source for nuclear security and nuclear non-proliferation; this project includes the basic technological development of NRTA, NRCA/PGA, neutron differential die-away (DDA) and a Delayed Gamma-ray (DG) technique. A system of active neutron NDA has been proposed. In this presentation, we review the methods and techniques on NRCA and PGA, which will be utilized for identifying materials in the objects in active neutron NDA.
呉田 昌俊; 小泉 光生; 大図 章; 古高 和禎; 土屋 敬広*; 瀬谷 道夫; 原田 秀郎; Abousahl, S.*; Heyse, J.*; Kopecky, S.*; et al.
Proceedings of 37th ESARDA Annual Meeting (Internet), p.111 - 120, 2015/08
原子力機構は、EC-JRCとの国際共同研究による「アクティブ中性子非破壊測定技術開発」に着手した。本研究課題の最終目標は、MA核変換用MA-Pu燃料など高線量核燃料や、核セキュリティ関連装置への適用を目指した核物質測定技術を確立することである。本研究課題では、アクティブ中性子法であるDDA法, NRTA法, PGA/NRCA法, DGS法による核物質測定技術の研究開発を行う。
Rodriguez, D.; Heyse, J.*; 小泉 光生; Mondelaers, W.*; Pedersen, B.*; Schillebeeckx, P.*; 瀬谷 道夫; 高峰 潤
Proceedings of INMM 56th Annual Meeting (Internet), 8 Pages, 2015/07
核物質の保障措置をいかに有効に実施するか、特に、混合物の組成を如何に効率的に決定するか、について関心が高まっている。原子力機構とJRC(ITU及びIRMM)の研究者は、現在、D-Tパルス中性子源を使う非破壊測定装置について検討を行っている。このシステムは時間差ダイアウェイ法,中性子共鳴透過分析法,即発線分析,遅発線スペクトル分析法の組合せを利用するものである。我々の特段の興味は、このシステムを再処理・精製PuのMOX燃料及び高線量の核物質に適用することである。遅発線スペクトル分析法は核分裂性核種の比を比較的高い精度で決められる可能性を有する。これらの核分裂生成物は、時間依存性を持ち3MeVよりかなり高いエネルギーの線エネルギースペクトルを有し、興味対象の高放射線核物質へ適用する場合には大きな利点となる。この発表では、このNDAシステムの遅発線分析部分の精度がどれくらいのものとなるかに関する初期的な研究と、核物質の組成分析において、他の手法との関連でどのように使われるかについて記述する。
Paradela, C.*; Alaerts, G.*; Becker, B.*; 原田 秀郎; Heyse, J.*; 北谷 文人; 小泉 光生; Kopecky, S.*; Mondelaers, W.*; Moens, A.*; et al.
EUR-27507-EN, 16 Pages, 2015/04
Neutron Resonance Densitometry (NRD), a non-destructive analysis method, is presented. The method has been developed to quantify special nuclear material (SNM) in debris of melted fuel that will be produced during the decommissioning of the Fukushima Daiichi Nuclear Power Plants. The method is based on Neutron Resonance Transmission Analysis (NRTA) and Neutron Resonance Capture Analysis (NRCA). The quantification of SNM relies on the NRTA results. The basic principles of NRD, which are based on well-established methodologies for neutron resonance spectroscopy, are explained. To develop NRD for the characterization of rock- and particle like heterogeneous samples a JAEA/JRC collaboration has been established. As part of this collaboration a NRD demonstration workshop was organized at the TOF facility GELINA of the JRC-IRMM. The results of this workshop are presented. They illustrate the potential of measurements of complex mixtures of different elements. It is demonstrated that the elemental composition of an unknown sample predicted by NRTA deviated on average by less than 2% from the declared value. In addition the potential to identify the presence of light elements by NRCA is shown.
Schillebeeckx, P.*; Becker, B.*; Danon, Y.*; Guber, K.*; 原田 秀郎; Heyse, J.*; Junghans, A. R.*; Kopecky, S.*; Massimi, C.*; Moxon, M. C.*; et al.
Nuclear Data Sheets, 113(12), p.3054 - 3100, 2012/12
被引用回数:107 パーセンタイル:97.09(Physics, Nuclear)Uncertainty components of experimental observables resulting from total and reaction cross section experiments are quantified by identifying the metrological parameters involved in the measurement, data reduction and analysis process. In addition, different methods that can be applied to propagate the covariance of the experimental observables to the covariance of the resonance parameters are discussed and compared. It is demonstrated that the final covariance matrix of the resonance parameters not only strongly depends on the type of experimental observables used in the adjustment process, the experimental conditions and the characteristics of the resonance structure, but also on the method that is used to propagate the covariances. In addition, a special data reduction concept and format is presented, which offers the possibility to store the full covariance information of experimental data in the EXFOR library.
Schillebeeckx, P.*; Alaerts, G.*; Becker, B.*; Paradela, C.*; Heyse, J.*; Kopecky, S.*; Vendelbo, D.*; Wynants, R.*; 原田 秀郎; 北谷 文人; et al.
no journal, ,
中性子共鳴反応を利用して非破壊で試料を分析する手法に、中性子共鳴透過分析法(NRTA)がある。NRTAは中性子を試料に照射し、透過してくる中性子を計測することで試料を分析する。我々はJRC-IRMM(共同研究センター/標準物質・測定研究所)の中性子飛行時間施設GELINAにおいて、核物質の特性を評価するためNRTAの研究開発を行っている。その一環として、過酷事故で発生が予測される粒子状溶融燃料デブリに含まれる核物質の定量にNRTAを適用することを目的とした開発に取り組んできた。その開発の中で、デブリ中の核物質の定量精度が中性子吸収材のボロン(B)の存在量やデブリのさまざまな形や大きさに強く影響を受けることがわかった。こうしたデブリに特徴的な性質に対処するため、解析手法の改良やモデルの開発を行ってきた。本発表では、開発した解析手法やモデルの妥当性を検討するためGELINAで実施したNRTA実験の結果について報告し、中性子吸収材の存在下においても、NRTAでは2%以下の精度で核分裂性物質の量を導出できることを示す。
原田 秀郎; 小泉 光生; 土屋 晴文; 北谷 文人; 瀬谷 道夫; Becker, B.*; Heyse, J.*; Kopecky, S.*; Paradela, C.*; Schillebeeckx, P.*
no journal, ,
原子力機構は、原子力発電所の事故で発生するような燃料デブリ中の核燃料を非破壊で計測するため、中性子共鳴濃度分析法の概念を提唱し、EC-JRC-IRMMとの国際共同研究により、IRMMのパルス中性子発生施設を用いて技術開発を進め、その有効性を示す試験データを取得すると共に、並行して分析手法の開発を進めてきた。本講演では、中性子共鳴濃度分析法の概念を概説するとともに、本共同研究により得られた主要な研究成果である、ウラン試料を用いた分析結果、構造材料の同定結果、非均一の粒子状サンプルを用いた分析結果、さらに任意形状のサンプルを分析可能とする解析手法等について解説する。