Refine your search:     
Report No.
Search Results: Records 1-20 displayed on this page of 30

Presentation/Publication Type

Initialising ...


Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...


Initialising ...


Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Oxygen reduction activity and interfacial structures of La$$_{0.8}$$Sr$$_{0.2}$$CoO$$_{3}$$ at initial electrochemical process in an alkaline solution

Matsuzaki, Akira*; Hirayama, Masaaki*; Oguchi, Shoya*; Komo, Mamoru*; Ikezawa, Atsunori*; Suzuki, Kota*; Tamura, Kazuhisa; Arai, Hajime*; Kanno, Ryoji*

Electrochemistry, 90(10), p.107001_1 - 107001_8, 2022/10

 Times Cited Count:0 Percentile:0.01(Electrochemistry)

Oxygen reduction and evolution reactions (ORR and OER) of perovskite-type La$$_{0.8}$$Sr$$_{0.2}$$CoO$$_{3}$$ were characterized using two-dimensional model electrodes with different reaction planes. Synthesized by pulsed laser deposition, these thin and flat electrodes can reveal the reaction plane dependence of the ORR activity. From steady-state polarization measurements in KOH (aq.), the ORR activity was the highest on the (001) film during the first ORR/OER cycle, and it decreased significantly during the second cycle. In-situ synchrotron X-ray diffraction clarified crystal structure changes in the bulk and surface regions of La$$_{0.8}$$Sr$$_{0.2}$$CoO$$_{3}$$, and these changes are associated with forming oxygen defects during the initial electrochemical process. Furthermore, the La$$_{0.8}$$Sr$$_{0.2}$$CoO$$_{3}$$ surface partially decomposed upon reacting. Therefore, the interfacial structures formed in the electrochemical reaction field is important for enhancing ORR and OER activities.

Journal Articles

Reactions of the Li$$_{2}$$MnO$$_{3}$$ cathode in an all-solid-state thin-film battery during cycling

Hikima, Kazuhiro*; Hinuma, Yoyo*; Shimizu, Keisuke*; Suzuki, Kota*; Taminato, So*; Hirayama, Masaaki*; Masuda, Takuya*; Tamura, Kazuhisa; Kanno, Ryoji*

ACS Applied Materials & Interfaces, 13(6), p.7650 - 7663, 2021/02

 Times Cited Count:4 Percentile:51.92(Nanoscience & Nanotechnology)

We evaluated the structural change of the cathode material Li$$_{2}$$MnO$$_{3}$$ that was deposited as an epitaxial film with an (001) orientation in an all-solid-state battery. In case of the electrode with LiPO$$_{4}$$ coating. Experiments revealed a structural change to a high-capacity (activated) phase that proceeded gradually and continuously with cycling. The activated phase barely showed any capacity fading. We propose a mechanism of structural change with cycling: charging to a high voltage at a sufficiently low Li concentration typically induces irreversible transition to a phase detrimental to cycling that could, but not necessarily, be accompanied by the dissolution of Mn and/or the release of O into the electrolyte, while a gradual irreversible transition to an activated phase happens at a similar Li concentration under a lower voltage.

Journal Articles

Reversible structural changes and high-rate capability of Li$$_{3}$$PO$$_{4}$$-modified Li$$_{2}$$RuO$$_{3}$$ for lithium-rich layered rocksalt oxide cathodes

Taminato, So*; Hirayama, Masaaki*; Suzuki, Kota*; Kim, K.-S.*; Tamura, Kazuhisa; Kanno, Ryoji*

Journal of Physical Chemistry C, 122(29), p.16607 - 16612, 2018/07

 Times Cited Count:7 Percentile:32.45(Chemistry, Physical)

Lithium-rich layered rocksalt oxides are promising cathode materials for lithium-ion batteries. We investigate the effects of surface modification by amorphous Li$$_{3}$$PO$$_{4}$$ on the structures and electrochemical reactions in the surface region of an epitaxial Li$$_{2}$$RuO$$_{3}$$(010) film electrode. Structural characterization using SXRD, HAXPES, and NR shows that surface modification by Li$$_{3}$$PO$$_{4}$$ resulted in the partial substitution of P for Li in the surface region of Li$$_{2}$$RuO$$_{3}$$. The modified (010) surface exhibits better rate capability at 20 C compared to the unmodified surface. ${it In situ}$ surface XRD confirmed that highly reversible structural changes occurred at the modified surface during lithium (de)intercalation. These results demonstrate that this surface modification stabilizes the crystal structure in the surface region, and it can improve the rate capability of lithium-rich layered rocksalt oxide cathodes.

Journal Articles

Study on the deterioration mechanism of layered rock-salt electrodes using epitaxial thin films; Li(Ni, Co, Mn)O$$_{2}$$ and their Zr-O surface modified electrodes

Abe, Machiko*; Iba, Hideki*; Suzuki, Kota*; Minamishima, Hiroaki*; Hirayama, Masaaki*; Tamura, Kazuhisa; Mizuki, Junichiro*; Saito, Tomohiro*; Ikuhara, Yuichi*; Kanno, Ryoji*

Journal of Power Sources, 345, p.108 - 119, 2017/03

 Times Cited Count:10 Percentile:40.22(Chemistry, Physical)

The surface structure of the Li(Ni, Co, Mn)O$$_{2}$$ electrode was studied during charge/discharge process using electrochemical methods and X-ray/Neutron scattering techniques. It was found that during charge/discharge process the coverage of spinel structure increased. The spinel structure has low electrochemical activity and is not involved in Li insertion/extraction. After the surface modification, it was found that the coverage of the spinel structure did not increase. Further, it was also found out that the Li concentration at the electrode/electrolyte interface increased.

Journal Articles

Lithium intercalation and structural changes at the LiCoO$$_{2}$$ surface under high voltage battery operation

Taminato, So*; Hirayama, Masaaki*; Suzuki, Kota*; Tamura, Kazuhisa; Minato, Taketoshi*; Arai, Hajime*; Uchimoto, Yoshiharu*; Ogumi, Zempachi*; Kanno, Ryoji*

Journal of Power Sources, 307, p.599 - 603, 2016/03

 Times Cited Count:30 Percentile:72.77(Chemistry, Physical)

An epitaxial-film model electrode of LiCoO$$_{2}$$(104) was fabricated on SrRuO$$_{3}$$(100)/Nb:SrTiO$$_{3}$$(100) using pulsed laser deposition. The 50 nm thick LiCoO$$_{2}$$(104) film exhibited lithium (de-)intercalation activity with a first discharge capacity of 119 mAh g$$^{-1}$$ between 3.0 and 4.4 V, followed by a gradual capacity fading with subsequent charge-discharge cycles. In contrast, a 3.2 nm thick Li$$_{3}$$PO$$_{4}$$-coated film exhibited a higher intercalation capacity of 148 mAh g$$^{-1}$$ with superior cycle retention than the uncoated film. In situ surface X-ray diffraction measurements revealed a small lattice change at the coated surface during the (de-)intercalation processes compared to the uncoated surface. The surface modification of LiCoO$$_{2}$$ by the Li$$_{3}$$PO$$_{4}$$ coating could lead to improvement of the structural stability at the surface region during lithium (de-)intercalation at high voltage.

Journal Articles

Structural analysis of electrode-electrolyte interface in lithium batteries

Kanno, Ryoji*; Hirayama, Masaaki*; Suzuki, Kota*; Tamura, Kazuhisa

Hyomen Kagaku, 37(2), p.52 - 59, 2016/02

Batteries are a key technology in today's society. Since the lithium-ion configuration has been widely accepted, significant efforts have been devoted to attain high energy and power densities to produce an excellent energy storage system without any safety issue. To improve the reliability and power characteristics of batteries, deep insights into the reactions at the electrode/electrolyte interface are necessary. The model systems with epitaxial thin-film electrodes might be suitable for understanding these reactions. The in situ techniques for directly observing surface structural changes of the electrodes have been developed for surface X-ray scattering and neutron reflectivity techniques. These techniques are reviewed and future studies on the interfacial reaction in batteries will be discussed.

Journal Articles

Interfacial analysis of surface-coated LiMn$$_{2}$$O$$_{4}$$ epitaxial thin film electrode for lithium batteries

Suzuki, Kota*; Hirayama, Masaaki*; Kim, K.-S.*; Taminato, So*; Tamura, Kazuhisa; Son, J.-Y.*; Mizuki, Junichiro; Kanno, Ryoji*

Journal of the Electrochemical Society, 162(13), p.A7083 - A7090, 2015/08

 Times Cited Count:8 Percentile:29.2(Electrochemistry)

The effects of surface coatings on LiMn$$_{2}$$O$$_{4}$$ were investigated using LiMn$$_{2}$$O$$_{4}$$ epitaxial thin films with a thickness of 30 nm. Bare and surface-coated LiMn$$_{2}$$O$$_{4}$$ epitaxial thin films were synthesized on SrTiO$$_{3}$$(111) substrates using a pulsed laser deposition method. The surface coating, which was formed using the solid electrolyte Li$$_{3}$$PO$$_{4}$$ and had a thickness of 3 nm, improved the reversibility of the electrochemical reactions undergone by the LiMn$$_{2}$$O$$_{4}$$ epitaxial thin films. The changes induced in the surface structure were maintained during battery operation; in contrast, the bare LiMn$$_{2}$$O$$_{4}$$ thin film exhibited structural degradation and Mn dissolution. The structural changes induced in the coated electrode and the increase in its surface stability were intrinsic effects of the Li$$_{3}$$PO$$_{4}$$ coating and improved the electrochemical performance of the LiMn$$_{2}$$O$$_{4}$$ thin-film electrode.

Journal Articles

Mechanistic studies on lithium intercalation in a lithium-rich layered material using Li$$_{2}$$RuO$$_{3}$$ epitaxial film electrodes and ${{it in situ}}$ surface X-ray analysis

Taminato, So*; Hirayama, Masaaki*; Suzuki, Kota*; Kim, K.-S.*; Zheng, Y.*; Tamura, Kazuhisa; Mizuki, Junichiro; Kanno, Ryoji*

Journal of Materials Chemistry A, 2(34), p.17875 - 17882, 2014/11

 Times Cited Count:20 Percentile:56.71(Chemistry, Physical)

The surface structure of a lithium-rich layered material and its relation to intercalation properties were investigated by synchrotron X-ray surface structural analyses using Li$$_{2}$$RuO$$_{3}$$ epitaxial-film model electrodes with different lattice planes of (010) and (001). Electrochemical charge-discharge measurements confirmed reversible lithium intercalation activity through both planes, corresponding to three-dimensional lithium diffusion within the Li$$_{2}$$RuO$$_{3}$$. The (001) plane exhibited higher discharge capacities compared to the (010) plane under high rate operation (over 5 C). Direct observations of surface structural changes by ${{it in situ}}$ surface X-ray diffraction (XRD) and surface X-ray absorption near edge structure (XANES) established that an irreversible phase change occurs at the (010) surface during the first (de)intercalation process, whereas reversible structural changes take place at the (001) surface.

JAEA Reports

Introduction of a backup system for data and servers of main IT infrastructure services

Hirayama, Takashi; Kannari, Masaaki

JAEA-Technology 2013-003, 33 Pages, 2013/06


The optimization of the JAEA network system has been promoted in accordance with the optimization plan which has the fundamental principles of ensuring its dependability, information security and usability. In respect to ensuring the dependability, we addressed to (a) the reduction of both trouble probability and recovery time, and (b) an execution of the business continuity plan in time of large-scale earthquake. For the latter, we installed an e-mail backup server and an alternate connection to the internet in Kansai Photon Science Institute (Kizu-area) based on lesson learned from the experience of the Tohoku earthquake on March 11th, 2011. In addition, we introduced a backup system for data and servers of other main IT infrastructure services. This report documents the configuration and operation of the backup system.

Journal Articles

Characterization of nano-sized epitaxial Li$$_{4}$$Ti$$_{5}$$O$$_{12}$$(110) film electrode for lithium batteries

Kim, K.-S.*; Tojigamori, Takeshi*; Suzuki, Kota*; Taminato, So*; Tamura, Kazuhisa; Mizuki, Junichiro; Hirayama, Masaaki*; Kanno, Ryoji*

Denki Kagaku Oyobi Kogyo Butsuri Kagaku, 80(10), p.800 - 803, 2012/10

 Times Cited Count:12 Percentile:31.79(Electrochemistry)

Electrochemical properties and structure changes of nano-sized Li$$_{4}$$Ti$$_{5}$$O$$_{12}$$ during lithium (de)intercalation wereinvestigated using a two-dimensional thin film electrode. Li$$_{4}$$Ti$$_{5}$$O$$_{12}$$ thin films were deposited on a Nb:SrTiO$$_{3}$$(110)substrate by a pulsed laser deposition technique. In situ X-ray diffraction measurements clarified the drastic structural changes of the Li$$_{4}$$Ti$$_{5}$$O$$_{12}$$film upon soaking in the electrolyte and during the first intercalation and deintercalation processes. The surfaceregion of Li$$_{4}$$Ti$$_{5}$$O$$_{12}$$ had a different structure from the bulk during electrochemical cycling and could cause the nanosizedLi$$_{4}$$Ti$$_{5}$$O$$_{12}$$ electrodes to have high capacities and poor stabilities.

JAEA Reports

Introduction of the WAN accelerator in JAEA network

Hirayama, Takashi; Kannari, Masaaki; Sato, Tomohiko

JAEA-Testing 2012-002, 29 Pages, 2012/06


In pursuance of "The Optimization Plan on the network of JAEA", which aims to ensure network reliability and information security and to improve convenience in using the network, we are engaged in the optimization of inter-institute/center network bandwidth. This is a record of an introduction of WAN accelerator into the network to Ningyo-toge Environmental Engineering Center which bandwidth is limited due to a geographically constraint.

Journal Articles

Dynamic structural changes at LiMn$$_{2}$$2O$$_{4}$$/electrolyte interface during lithium battery reaction

Hirayama, Masaaki*; Ido, Hidekazu*; Kim, K.-S.*; Cho, W.*; Tamura, Kazuhisa; Mizuki, Junichiro; Kanno, Ryoji*

Journal of the American Chemical Society, 132(43), p.15268 - 15276, 2010/11

 Times Cited Count:296 Percentile:97.91(Chemistry, Multidisciplinary)

Epitaxial LiMn$$_{2}$$O$$_{4}$$ thin films with restricted lattice planes (111) and (110) are grown on SrTiO$$_{3}$$ substrates by pulsed laser deposition. In situ SXRD studies have revealed dynamic structural changes that reduce the atomic symmetry at the electrode surface during the initial electrochemical reaction. The surface structural changes commence with the formation of an electric double layer, which is followed by surface reconstruction when a voltage is applied in the first charge process. Transmission electron microscopy images after 10 cycles confirm the formation of a solid electrolyte interface (SEI) layer on both the (111) and (110) surfaces and Mn dissolution from the (110) surface. The (111) surface is more stable than the (110) surface. The electrode stability of LiMn$$_{2}$$O$$_{4}$$ depends on the reaction rate of SEI formation and the stability of the reconstructed surface structure.

Journal Articles

Structural changes in surface and bulk LiNi$$_{0.5}$$Mn$$_{0.5}$$O$$_{2}$$ during electrochemical reaction on epitaxial thin-film electrodes characterized by ${it in situ}$ X-ray scattering

Sakamoto, Kazuyuki*; Hirayama, Masaaki*; Konishi, Hiroaki*; Sonoyama, Noriyuki*; Dupr$'e$, N.*; Guyomard, D.*; Tamura, Kazuhisa; Mizuki, Junichiro; Kanno, Ryoji*

Physical Chemistry Chemical Physics, 12(15), p.3815 - 3823, 2010/04

 Times Cited Count:32 Percentile:74.83(Chemistry, Physical)

Surface and bulk structural changes of LiNi$$_{0.5}$$Mn$$_{0.5}$$O$$_{2}$$ were investigated during electrochemical reaction using synchrotron X-ray scattering and a restricted reaction plane consisting of two dimensional epitaxial-film electrodes. The changes in bulk structure confirmed lithium diffusion through the (110) surface, which was perpendicular to the two-dimensional (2D) edges of the layered structure. No (de)intercalation reaction was observed through the (003) surface at voltages of 3.0-5.0 V. However, intercalation did proceed through the (003) plane below 3.0 V, indicating unusual three-dimensional (3D) lithium diffusion in the over-lithiated 2D structure. During the electrochemical process, the surface of the electrode showed different structure changes from those of the bulk structure. The reaction echanism of the intercalation electrodes for lithium batteries is discussed on the basis of surface and bulk structural changes.

Journal Articles

Surface structure of LiNi$$_{0.8}$$Co$$_{0.2}$$O$$_{2}$$; A New experimental technique using in situ X-ray diffraction and two-dimensional epitaxial film electrodes

Sakamoto, Kazuyuki*; Hirayama, Masaaki*; Sonoyama, Noriyuki*; Mori, Daisuke*; Yamada, Atsuo*; Tamura, Kazuhisa; Mizuki, Junichiro; Kanno, Ryoji*

Chemistry of Materials, 21(13), p.2632 - 2640, 2009/05

 Times Cited Count:36 Percentile:71.82(Chemistry, Physical)

Surface and bulk structural changes in LiNi$$_{0.8}$$Co$$_{0.2}$$O$$_{2}$$ were observed during electrochemical reactions using synchrotron X-ray scattering and a restricted reaction plane of two-dimensional (2D) epitaxial-film electrodes. The bulk structural changes confirmed lithium diffusion through the (110) surface, which is perpendicular to the 2D edges of the layered structure. No (de)intercalation reaction was observed through the (003) surface in the voltage range of 3.0-5.0 V. However, intercalation proceeded below 3.0 V, which indicates unusual three-dimensional lithium diffusion in the 2D structure in the overlithiated state. Structural changes at the electrode surface were different from those in the bulk.

Journal Articles

Research and development on environmental radionuclides for nuclear non-proliferation at Japan Atomic Energy Agency

Usuda, Shigekazu; Shinohara, Nobuo; Sakurai, Satoshi; Magara, Masaaki; Miyamoto, Yutaka; Esaka, Fumitaka; Yasuda, Kenichiro; Kokubu, Yoko; Hirayama, Fumio; Lee, C. G.; et al.

KEK Proceedings 2007-16, p.13 - 22, 2008/02

For the purpose of controlling and monitoring radiations and radioactive materials emitted from nuclear facilities to the environment and also evaluating their effects, various R&D on environmental radioactivity has been carried out at Japan Atomic Energy Agency (JAEA). Especially, for the abolition of nuclear weapons and for peaceful uses nuclear energy, ultra-trace analysis of environmental samples for safeguards and ultra-high sensitive monitoring of radionuclides for the CTBT verification, which have been scheduled in the middle of 1990s, have been promotted under the auspices of the Japanese Government at JAERI, the former of JAEA. In this presentation, the outline of R&D on environmental radioactivity for nuclear non-proliferation is introduced. In addition, applications of the developed techniques and future perspectives will be discussed.

Journal Articles

Characterization of electrode/electrolyte interface using ${it in situ}$ X-ray reflectometry and LiNi$$_{0.8}$$Co$$_{0.2}$$O$$_{2}$$ epitaxial film electrode synthesized by pulsed laser deposition method

Hirayama, Masaaki*; Sakamoto, Kazuyuki*; Hiraide, Tetsuya*; Mori, Daisuke*; Yamada, Atsuo*; Kanno, Ryoji*; Sonoyama, Noriyuki*; Tamura, Kazuhisa; Mizuki, Junichiro

Electrochimica Acta, 53(2), p.871 - 881, 2007/12

 Times Cited Count:41 Percentile:65.72(Electrochemistry)

An ${it in situ}$ experimental technique was developed for detecting structure changes at the electrode/electrolyte interface of lithium cell using synchrotron X-ray reflectometry and two-dimensional model electrodes with a restricted lattice plane. The electrode was constructed with an epitaxial film of LiNi$$_{0.8}$$Co$$_{0.2}$$O$$_{2}$$ synthesized by the pulsed laser deposition method. These films provided an ideal reaction field suitable for detecting structure changes at the electrode/electrolyte interface during the electrochemical reaction. The X-ray reflectometry indicated a formation of a thin-film layer at the LiNi$$_{0.8}$$Co$$_{0.2}$$O$$_{2}$$ (1 1 0)/electrolyte interface during the first charge-discharge cycle, while the LiNi$$_{0.8}$$Co$$_{0.2}$$O$$_{2}$$ (0 0 3) surface showed an increase in the surface roughness without forming the surface thin-film layer.

Journal Articles

Development of safeguards environmental sample analysis techniques at JAEA as a network laboratory of IAEA

Sakurai, Satoshi; Magara, Masaaki; Esaka, Fumitaka; Hirayama, Fumio; Lee, C. G.; Yasuda, Kenichiro; Inagawa, Jun; Suzuki, Daisuke; Iguchi, Kazunari; Kokubu, Yoko; et al.

STI/PUB/1298 (CD-ROM), p.791 - 799, 2007/08

no abstracts in English

Journal Articles

Characterization of electrode/electrolyte interface for lithium batteries using ${it in situ}$ synchrotron X-ray reflectometry; A New experimental technique for LiCoO$$_{2}$$ model electrode

Hirayama, Masaaki*; Sonoyama, Noriyuki*; Abe, Takashi*; Minoura, Machiko*; Ito, Masumi*; Mori, Daisuke*; Yamada, Atsuo*; Kanno, Ryoji*; Terashima, Takahito*; Takano, Mikio*; et al.

Journal of Power Sources, 168(2), p.493 - 500, 2007/06

 Times Cited Count:84 Percentile:90.03(Chemistry, Physical)

A new experimental technique was developed for detecting structure changes at electrode/electrolyte interface of lithium cell using X-ray reflectometry and two-dimensional model electrodes with a restricted lattice-plane. The electrodes were constructed with an epitaxial film of LiCoO$$_{2}$$ synthesized by pulsed laser deposition method. The anisotropic properties were confirmed by electrochemical measurements. ${it Ex situ}$ X-ray reflectivity measurements indicated that the impurity layer existed on the as-grown LiCoO$$_{2}$$ was dissolved and a new SEI layer with lower density was formed after soaking into the electrolyte. ${it In situ}$ X-ray reflectivity measurements indicated that the surface roughness of the intercalation (1 1 0) plane increased with applying voltages, while no significant changes in surface morphology were observed for the intercalation non-active (0 0 3) plane during the pristine stage of the charge-discharge process.

Journal Articles

Characterization of electrode/electrolyte interface with X-ray reflectometry and epitaxial-film LiMn$$_{2}$$O$$_{4}$$ electrode

Hirayama, Masaaki*; Sonoyama, Noriyuki*; Ito, Masumi*; Minoura, Machiko*; Mori, Daisuke*; Yamada, Atsuo*; Tamura, Kazuhisa; Mizuki, Junichiro; Kanno, Ryoji*

Journal of the Electrochemical Society, 154(11), p.A1065 - A1072, 2007/00

 Times Cited Count:89 Percentile:94.96(Electrochemistry)

Structural changes at electrode/electrolyte interface of a lithium cell were studied by X-ray reflectometry and two-dimensional model electrodes with a restricted lattice plane of LiMn$$_{2}$$O$$_{4}$$. The ex situ reflectometry indicated that a thin impurity layer covered the lattice plane of the as-grown film. The impurity layer was dissolved and a solid-electrolyte-interface-like phase appeared after the electrode was soaked into the electrolyte. The in situ observation clarified that the surface reactivity depended on the lattice planes of the spinel; the defect layer at the (111) plane was stable during the electrochemical reaction, whereas a slight decrease in the film thickness was observed for the (110) plane. Our surface characterization of the intercalation electrode indicated that the surface structure changes during the pristine stage of the change-discharge processes and these changes are dependent on the lattice orientation of LiMn$$_{2}$$O$$_{4}$$.

Journal Articles

Challenge to ultra-trace analytical techniques of nuclear materials in environmental samples for safeguards at JAERI; Methodologies for physical and chemical form estimation

Usuda, Shigekazu; Yasuda, Kenichiro; Kokubu, Yoko; Esaka, Fumitaka; Lee, C. G.; Magara, Masaaki; Sakurai, Satoshi; Watanabe, Kazuo; Hirayama, Fumio; Fukuyama, Hiroyasu; et al.

International Journal of Environmental Analytical Chemistry, 86(9), p.663 - 675, 2006/08

 Times Cited Count:14 Percentile:41.18(Chemistry, Analytical)

The IAEA introduced the environmental sample analysis method, as a powerful tool to detect undeclared nuclear activities, into strengthened safeguards system. The principle of the method is that nuclear signatures can be evidenced if trace amount of nuclear materials in environmental samples taken from inside and outside of nuclear facilities are accurately analyzed. Currently, isotope ratios of uranium and plutonium in "swipe" samples are measured, which are collected in nuclear facilities. In future, the subject of environmental sample analysis will expand to soil, sediment, vegetation, water and airborne dust taken from outside of the nuclear facilities. If physical and chemical form of the nuclear materials is identified, we may estimate their origin, treatment process and migration behavior. This paper deals with the developed analytical techniques for the safeguards environmental samples, the current R&D on techniques related to estimation of the physical and chemical form, and possible analytical methodologies applicable to ultra-trace amounts of nuclear materials.

30 (Records 1-20 displayed on this page)