Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Hamamoto, Shimpei; Shimizu, Atsushi; Inoi, Hiroyuki; Tochio, Daisuke; Homma, Fumitaka; Sawahata, Hiroaki; Sekita, Kenji; Watanabe, Shuji; Furusawa, Takayuki; Iigaki, Kazuhiko; et al.
Nuclear Engineering and Design, 388, p.111642_1 - 111642_11, 2022/03
Times Cited Count:3 Percentile:47.03(Nuclear Science & Technology)Following the Fukushima Daiichi Nuclear Power Plant accident in 2011, the Japan Atomic Energy Agency adapted High-Temperature engineering Test Reactor (HTTR) to meet the new regulatory requirements that began in December 2013. The safety and seismic classifications of the existing structures, systems, and components were discussed to reflect insights regarding High Temperature Gas-cooled Reactors (HTGRs) that were acquired through various HTTR safety tests. Structures, systems, and components that are subject to protection have been defined, and countermeasures to manage internal and external hazards that affect safety functions have been strengthened. Additionally, measures are in place to control accidents that may cause large amounts of radioactive material to be released, as a beyond design based accident. The Nuclear Regulatory Commission rigorously and appropriately reviewed this approach for compliance with the new regulatory requirements. After nine amendments, the application to modify the HTTR's installation license that was submitted in November 2014 was approved in June 2020. This response shows that facilities can reasonably be designed to meet the enhanced regulatory requirements, if they reflect the characteristics of HTGRs. We believe that we have established a reference for future development of HTGR.
Ono, Masato; Iigaki, Kazuhiko; Sawahata, Hiroaki; Shimazaki, Yosuke; Shimizu, Atsushi; Inoi, Hiroyuki; Kondo, Toshinari; Kojima, Keidai; Takada, Shoji; Sawa, Kazuhiro
Journal of Nuclear Engineering and Radiation Science, 4(2), p.020906_1 - 020906_8, 2018/04
On March 11th, 2011, the 2011 off the Pacific coast of Tohoku Earthquake of magnitude 9.0 occurred. When the great earthquake occurred, the High Temperature Engineering Test Reactor (HTTR) had been stopped under the periodic inspection and maintenance of equipment and instruments. A comprehensive integrity evaluation was carried out for the HTTR facility because the maximum seismic acceleration observed at the HTTR exceeded the maximum value of design basis earthquake. The concept of comprehensive integrity evaluation is divided into two parts. One is the "visual inspection of equipment and instruments". The other is the "seismic response analysis" for the building structure, equipment and instruments using the observed earthquake. All equipment and instruments related to operation were inspected in the basic inspection. The integrity of the facilities was confirmed by comparing the inspection results or the numerical results with their evaluation criteria. As the results of inspection of equipment and instruments associated with the seismic response analysis, it was judged that there was no problem for operation of the reactor, because there was no damage and performance deterioration. The integrity of HTTR was also supported by the several operations without reactor power in cold conditions of HTTR in 2011, 2013 and 2015. Additionally, the integrity of control rod guide blocks was also confirmed visually when three control rod guide blocks and six replaceable reflector blocks were taken out from reactor core in order to change neutron startup sources in 2015.
Ono, Masato; Shimizu, Atsushi; Kondo, Makoto; Shimazaki, Yosuke; Shinohara, Masanori; Tochio, Daisuke; Iigaki, Kazuhiko; Nakagawa, Shigeaki; Takada, Shoji; Sawa, Kazuhiro
Journal of Nuclear Engineering and Radiation Science, 2(4), p.044502_1 - 044502_4, 2016/10
In the loss of forced core cooling test using High Temperature engineering Test Reactor (HTTR), the forced cooling of reactor core is stopped without inserting control rods into the core and cooling by Vessel Cooling System (VCS) to verify safety evaluation codes to investigate the inherent safety of HTGR be secured by natural phenomena to make it possible to design a severe accident free reactor. The VCS passively removes the retained residual heat and the decay heat from the core via the reactor pressure vessel by natural convection and thermal radiation. In the test, the local temperature was supposed to exceed the limit from the viewpoint of long-term use at the uncovered water cooling tube by thermal reflectors in the VCS, although the safety of reactor is kept. Through a cold test, which was carried out by non-nuclear heat input from gas circulators with stopping water flow in the VCS, the local higher temperature position was specified although the temperature was sufficiently lower than the maximum allowable working temperature, and natural circulation of water had insufficient cooling effect on the temperature of water cooling tube below 1C. Then, a new safe and secured procedure for the loss of forced core cooling test was established, which will be carried out soon after the restart of HTTR.
Nakajima, Norihiro; Nishida, Akemi; Miyamura, Hiroko; Iigaki, Kazuhiko; Sawa, Kazuhiro
Kashika Joho Gakkai-Shi (USB Flash Drive), 36(Suppl.2), 4 Pages, 2016/10
Since nuclear power plants have dimensions approximately 100m and their structures are an assembly made up of over 10 million components, it is not convenient to experimentally analyze its behavior under strong loads of earthquakes, due to the complexity and hugeness of plants. The proposed system performs numerical simulations to evaluate the behaviors of an assembly like a nuclear facility. The paper discusses how to carry out visual analysis for assembly such as nuclear power plants. In a result discussion, a numerical experiment was carried out with a numerical model of High Temperature engineering Test Reactor of Japan Atomic Energy Agency and its result was compared with observed data. A good corresponding among them was obtained as a structural analysis of an assembly by using visualization. As a conclusion, a visual analytics methodology for assembly is discussed.
Ono, Masato; Iigaki, Kazuhiko; Shimazaki, Yosuke; Shimizu, Atsushi; Inoi, Hiroyuki; Tochio, Daisuke; Hamamoto, Shimpei; Nishihara, Tetsuo; Takada, Shoji; Sawa, Kazuhiro; et al.
Proceedings of 24th International Conference on Nuclear Engineering (ICONE-24) (DVD-ROM), 12 Pages, 2016/06
On March 11th, 2011, the Great East Japan Earthquake of magnitude 9.0 occurred. When the great earthquake occurred, the HTTR had been stopped under the periodic inspection and maintenance of equipment and instrument. In the great earthquake, the maximum seismic acceleration observed at the HTTR exceeded the maximum value in seismic design. The visual inspection of HTTR facility was carried out for the seismic integrity conformation of HTTR. The seismic analysis was also carried out using the observed earthquake motion at HTTR site to confirm the integrity of HTTR. The concept of comprehensive integrity evaluation for the HTTR facility is divided into two parts. One is the inspection of equipment and instrument. The other is the seismic response analysis using the observed earthquake. For the basic inspections of equipment and instrument were performed for all them related to the operation of reactor. The integrity of the facilities is confirmed by comparing the inspection results or the numerical results with their evaluation criteria. As the result of inspection of equipment and instrument and seismic response analysis, it was judged that there was no problem to operate the reactor, because there was no damage and performance deterioration, which affects the reactor operation. The integrity of HTTR was also supported by the several operations without reactor power in cold conditions of HTTR in 2011, 2013 and 2015.
Ono, Masato; Iigaki, Kazuhiko; Shimazaki, Yosuke; Tochio, Daisuke; Shimizu, Atsushi; Inoi, Hiroyuki; Hamamoto, Shimpei; Takada, Shoji; Sawa, Kazuhiro
Proceedings of International Topical Meeting on Research Reactor Fuel Management and Meeting of the International Group on Reactor Research (RRFM/IGORR 2016) (Internet), p.363 - 371, 2016/03
HTTR is graphite moderated and helium gas-cooled reactor with prismatic fuel elements and hexagonal blocks. Here, the graphite block is brittle materials and might be damaged by collision of neighboring blocks by the large earthquake. A seismic observation system is installed in the HTTR site to confirm a behavior of a seismic event. On March 11th, 2011, off the Pacific coast of Tohoku Earthquake of magnitude 9.0 occurred. After the accident at the TEPCO Fukushima Daiichi Nuclear Power Station, the safety of nuclear reactors is the highest importance. To confirm the seismic integrity of HTTR core components, the seismic analysis was carried out using the evaluation waves based on the relationship between the observed earthquake motion at HTTR site and frequency transfer function. In parallel, confirmation tests of primary cooling system on cold state and integrity confirmation of reactor buildings and component support structures were also carried out. As a result, it was found that a stress value of the graphite blocks satisfied an allowable value, and the integrity of the HTTR core components was ensured. The integrity of HTTR core components was also supported by the operation without reactor power in cold conditions of HTTR. The obtained data was compared with the normal plant data before the earthquake. As the result, the integrity of the HTTR facilities was confirmed.
Nishida, Akemi; Iigaki, Kazuhiko; Sawa, Kazuhiro; Li, Y.
Proceedings of 2015 ASME Pressure Vessels and Piping Conference (PVP 2015) (Internet), 7 Pages, 2015/07
The objective of this research was to investigate the influence of differences between methods for evaluating the seismic safety of the equipment and piping of a nuclear facility. For the input ground motion, one wave was chosen from among 200 waves of input ground motions of maximum acceleration of 700-1100 cm/s created for the Oarai District of the Ibaraki Prefecture. Seismic safety evaluations were performed using the conventional method, which relies on floor response spectrum data, and using the multi-input method. The differences between the two methods were summarized. The target equipment and piping system were cooling systems in a model plant. It was found that the response predicted by the multi-input method was approximately half of the response predicted by the conventional method. The third trial evaluation method using the floor response of a three-dimensional building model as input was also reported.
Nishida, Akemi; Nakajima, Norihiro; Kawakami, Yoshiaki; Iigaki, Kazuhiko; Sawa, Kazuhiro
Proceedings of 23rd International Conference on Nuclear Engineering (ICONE-23) (DVD-ROM), 7 Pages, 2015/05
The R&D on the three dimensional vibration simulation technologies for a nuclear facility is one of missions of Center for Computational Science and e-Systems, Japan Atomic Energy Agency. Until now, three dimensional building and equipment models of HTTR (High Temperature Engineering Test Reactor) have been constructed and been performed validation of the models by comparison with seismic observed records. In this report, the results obtained by seismic observation simulation on the Tohoku earthquake occurred in the 3/11/2011 using three dimensional models of the HTTR building are shown. The simulation results show good agreement with the real observation data.
Nakajima, Norihiro; Nishida, Akemi; Kawakami, Yoshiaki; Suzuki, Yoshio; Sawa, Kazuhiro; Iigaki, Kazuhiko
Proceedings of 23rd International Conference on Nuclear Engineering (ICONE-23) (DVD-ROM), 5 Pages, 2015/05
A numerical analysis controlling and managing system is implemented on K, which controls the modelling process and data treating, although the manager only controls a structural analysis by finite element method. The modeling process is described by the list of function ID and its procedures in a data base. The manager executes the process by order in the list for simulation procedures. The manager controls the intention of an analysis by changing the analytical process one to another. Experiments were carried out with static and dynamic analyses.
Takada, Shoji; Shimizu, Atsushi; Kondo, Makoto; Shimazaki, Yosuke; Shinohara, Masanori; Seki, Tomokazu; Tochio, Daisuke; Iigaki, Kazuhiko; Nakagawa, Shigeaki; Sawa, Kazuhiro
Proceedings of 23rd International Conference on Nuclear Engineering (ICONE-23) (DVD-ROM), 5 Pages, 2015/05
In the loss of forced core cooling test using High Temperature engineering Test Reactor (HTTR), the forced cooling of reactor core is stopped without inserting control rods into the core and cooling by Vessel Cooling System (VCS) to demonstrate the inherent safety of HTGR be secured by natural phenomena to make it possible to design a severe accident free reactor. In the test, the local temperature was supposed to exceed the limit from the viewpoint of long-term use at the uncovered water cooling tube by thermal reflectors in the VCS, although the safety of reactor is kept. The local higher temperature position was specified although the temperature was sufficiently lower than the maximum allowable working temperature, and natural circulation of water had insufficient cooling effect on the temperature of water cooling tube below 1C. Then, a new safe and secured procedure for the loss of forced core cooling test was established, which will be carried out soon after the restart of HTTR.
Iigaki, Kazuhiko; Ono, Masato; Shimazaki, Yosuke; Tochio, Daisuke; Shimizu, Atsushi; Inoi, Hiroyuki; Takada, Shoji; Sawa, Kazuhiro
Mechanical Engineering Journal (Internet), 1(4), p.TEP0021_1 - TEP0021_13, 2014/08
On March 11th, 2011, the Great East Japan Earthquake which is one of the largest earthquakes in Japan occurred and the maximum acceleration in observed seismic wave in the HTTR exceeded the design value in a part of input seismic motions. Therefore, a visual inspection, a seismic analysis and a performance confirmation test of facilities were carried out in order to confirm the integrity of facility after the earthquake. The seismic analysis was carried out for the reactor core structures by using the response magnification factor method. As the results of the evaluation, the generated stress in the graphite blocks in the reactor core at the earthquake were well below the allowable values of safety criteria, and thus the structural integrity of the reactor core was confirmed. The integrity of reactor core was also supported by the visual inspections of facilities and the operation without reactor power in cold conditions of HTTR.
Nakajima, Norihiro; Nishida, Akemi; Kawakami, Yoshiaki; Okada, Tatsuo*; Tsuruta, Osamu*; Sawa, Kazuhiro; Iigaki, Kazuhiko
Proceedings of 22nd International Conference on Nuclear Engineering (ICONE-22) (DVD-ROM), 9 Pages, 2014/07
Almost all industrial products are assembled from multiple parts. A nuclear facility is a large structure consisting of more than 10 million components. This paper discusses a method to analyze an assembly by gathering data on its component parts. Gathered data on component may identify ill conditioned meshes for connecting surfaces between components. These ill meshes are typified by nodal point disagreement in finite element discretization. A technique to resolve inconsistencies in data among the components is developed. By using this technique, structural analysis for an assembly can be carried out, and results can be obtained by the use of supercomputers, such as the K computer. Numerical results are discussed for components of the High Temperature Engineering Test Reactor.
Takada, Shoji; Iigaki, Kazuhiko; Shinohara, Masanori; Tochio, Daisuke; Shimazaki, Yosuke; Ono, Masato; Yanagi, Shunki; Nishihara, Tetsuo; Fukaya, Yuji; Goto, Minoru; et al.
Nuclear Engineering and Design, 271, p.472 - 478, 2014/05
Times Cited Count:8 Percentile:51.00(Nuclear Science & Technology)JAEA has carried out research and development to establish the technical basis of HTGRs using HTTR. To connect hydrogen production system to HTTR, it is necessary to ensure the reactor dynamics when thermal-load of the system is lost. Thermal-load fluctuation test is planned to demonstrate the reactor dynamics stability and to validate plant dynamics codes. It will be confirmed that the reactor become stable state during losing a part of removed heat at heat-sink. A temperature coefficient of reactivity is one of the important parameters for core dynamics calculations, and changes with burnup because of variance of fuel compositions. Measurement of temperature coefficient of reactivity has been conducted to confirm the validity of calculated temperature coefficient of reactivity. A LOFC test using HTTR has been carried out to verify the inherent safety under the condition of LOFC while the reactor shut-down system disabled.
Nakajima, Norihiro; Nishida, Akemi; Kawakami, Yoshiaki; Okada, Tatsuo; Tsuruta, Osamu; Sawa, Kazuhiro; Iigaki, Kazuhiko
Tabo Kikai, 42(5), p.332 - 338, 2014/05
K computer is one of the highest performance computers in the world. This paper discusses one of R&D issues in K computer national project. Industrial products are an artifact, which are assembly consisting of simple components more than at least two regardless of the big products and small products. In the nuclear industry, the facilities are large structures consisting of over 10 millions of components, since they are engaged with the highest technology and for safety sake. This paper introduces a method to analyze an assembly by gathering its components data. In the manner of gathering components data, it is raised many issues to concern among components. It is developed a technique to solve the inconsistent data among the components. By using this technique, a structural analysis for an assembly is done by using K computer. Numerical results are presented in the case of analysis for High Temperature engineering Test Reactor's components.
Takada, Shoji; Shinohara, Masanori; Seki, Tomokazu; Shimazaki, Yosuke; Ono, Masato; Tochio, Daisuke; Iigaki, Kazuhiko; Sawa, Kazuhiro
JAEA-Technology 2014-001, 34 Pages, 2014/03
The loss of forced cooling with vessel cooling system inactive has been planned by using HTTR at the reactor power 9 MW. In this test, the forced cooling of reactor core is lost and the vessel cooling system which removes decay heat from core is tripped. In the test, the technical items such that the temperature of water cooling tubes is expected to be higher are considered. The methods to solve such technical items were proposed. The proposed methods were verified based on the test data of the cold test toward the proposal of test plan of safety demonstration test. In the cold test, the two water trains of vessel cooling system was tripped under the condition that the reactor was heated up without nuclear heating. The reactor inlet temperature was set at 120 and 150C.
Nakajima, Norihiro; Nishida, Akemi; Matsubara, Hitoshi*; Hazama, Osamu*; Suzuki, Yoshio; Sawa, Kazuhiro; Iigaki, Kazuhiko
Transactions of the 22nd International Conference on Structural Mechanics in Reactor Technology (SMiRT-22) (CD-ROM), 10 Pages, 2013/08
It is not convenient to experimentally analyze its behavior under strong loads of earthquakes, since the facility is extremely huge and complex. The proposed system performs numerical simulations to evaluate the behaviors of an assembly like a nuclear facility. This system projects the components of an assembly onto both/either a distributed and/or a parallel computing environment in order to conduct a simulation of the behavior of an assembly such as a nuclear facility. In a result discussion, a numerical experiment was carried out with a cantilever model and its result was compared with theoretical data. A good corresponding among them was obtained as a structural analysis of an assembly by using a parallel computer. As a conclusion, a suggested methodology has shown to calculate a behavior of an assembly with High Temperature engineering Test Reactor.
Takada, Shoji; Yanagi, Shunki; Iigaki, Kazuhiko; Shinohara, Masanori; Tochio, Daisuke; Shimazaki, Yosuke; Ono, Masato; Sawa, Kazuhiro
UTNL-R-0483, p.9_1 - 9_10, 2013/03
no abstracts in English
Takada, Shoji; Iigaki, Kazuhiko; Shinohara, Masanori; Tochio, Daisuke; Shimazaki, Yosuke; Ono, Masato; Nishihara, Tetsuo; Fukaya, Yuji; Goto, Minoru; Tachibana, Yukio; et al.
Proceedings of 6th International Topical Meeting on High Temperature Reactor Technology (HTR 2012) (USB Flash Drive), 8 Pages, 2012/10
JAEA has carried out research and development to establish the technical basis of HTGRs using HTTR. LOFC test to verify the inherent safety of HTGR under the condition of loss of forced cooling while the reactor shut-down system disabled was initiated. A temperature coefficient of reactivity is one of the important parameters for core dynamics calculations for safety analysis, and changes with burnup because of variance of fuel compositions, which has been measured to confirm the validity of the calculated ones. In order to connect hydrogen production system to HTTR, it is necessary to ensure the reactor safety when thermal-load of the hydrogen production system is lost. Thermal load fluctuation test is planned to demonstrate the reactor safety and gain the test data for validation of the plant dynamics code. It will be confirmed that the reactor become stable state during a part of removed heat at HTTR heat-sink is lost.
Sakaba, Nariaki; Iigaki, Kazuhiro; Kawaji, Satoshi; Iyoku, Tatsuo
JAERI-Tech 98-013, 152 Pages, 1998/03
no abstracts in English
Nishida, Akemi; Kawakami, Yoshiaki; Nakajima, Norihiro; Iigaki, Kazuhiko; Sawa, Kazuhiro
no journal, ,
The R&D on the three dimensional vibration simulation technologies for a nuclear facility is one of missions of Center for Computational Science and e-Systems, Japan Atomic Energy Agency. Until now, three dimensional building and equipment models of HTTR (High Temperature Engineering Test Reactor) have been constructed and been performed validation of the models by comparison with seismic observed records. In this report, the results obtained by seismic observation simulation on the Tohoku earthquake occurred in the 3/11/2011 using three dimensional models of the HTTR building are shown.