Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Ieda, Junichi; Okayasu, Satoru; Harii, Kazuya*; Kobata, Masaaki; Yoshii, Kenji; Fukuda, Tatsuo; Ishida, Masahiko*; Saito, Eiji
IEEE Transactions on Magnetics, 58(8), p.1301106_1 - 1301106_6, 2022/08
Times Cited Count:0 Percentile:0(Engineering, Electrical & Electronic)The combination of spin-driven thermoelectric (STE) devices based on spin Seebeck effect (SSE), and radioactive isotopes as heat sources, has potential as a next-generation method of power generation in applications such as power supplies for space probes. However, there has been very limited knowledge available indicating the irradiation tolerance of spin thermoelectric devices. Through analysis using a heavy ion-beam accelerator and the hard X-ray photoemission spectroscopy (HAXPES) measurements, we show that a prototypical STE device based on YFe
O
/Pt heterostructures has tolerance to irradiation of high-energy heavy-ion beams. We used 320 MeV gold ion beams modeling cumulative damages due to fission products emitted from the surface of spent nuclear fuels. By varying the dose level, we confirmed that the thermoelectric and magnetic properties of the SSE elements are not affected by the ion-irradiation dose up to
ions/cm
fluence and that the SSE signal is extinguished around
ions/cm
, in which the ion tracks almost fully cover the sample surface. In addition, the HAXPES measurements were performed to understand the effects at the interface of Y
Fe
O
/Pt. The HAXPES measurements suggest that the chemical reaction that diminishes the SSE signals is enhanced with the increase of the irradiation dose. We share the current understandings of the damage analysis in Y
Fe
O
/Pt for developing better STE devices applicable to harsh environmental usages.
Aoki, Dai*; Brison, J.-P.*; Flouquet, J.*; Ishida, Kenji*; Knebel, G.*; Tokunaga, Yo; Yanase, Yoichi*
Journal of Physics; Condensed Matter, 34(24), p.243002_1 - 243002_41, 2022/06
Times Cited Count:24 Percentile:92.97(Physics, Condensed Matter)Kinjo, Katsuki*; Fujibayashi, Hiroki*; Nakamine, Genki*; Kitagawa, Shunsaku*; Ishida, Kenji*; Tokunaga, Yo; Sakai, Hironori; Kambe, Shinsaku; Nakamura, Ai*; Shimizu, Yusei*; et al.
Physical Review B, 105(14), p.L140502_1 - L140502_5, 2022/04
Times Cited Count:3 Percentile:78.61(Materials Science, Multidisciplinary)Tokunaga, Yo; Sakai, Hironori; Kambe, Shinsaku; Haga, Yoshinori; Tokiwa, Yoshifumi; Opletal, P.; Fujibayashi, Hiroyuki*; Kinjo, Katsuki*; Kitagawa, Shunsaku*; Ishida, Kenji*; et al.
Journal of the Physical Society of Japan, 91(2), p.023707_1 - 023707_5, 2022/02
Times Cited Count:8 Percentile:94.37(Physics, Multidisciplinary)Te NMR experiments in field (
) applied along the easy magnetization axis (the
-axis) revealed slow electronic dynamics developing in the paramagnetic state of UTe
. The observed slow fluctuations are concerned with a successive growth of long-range electronic correlations below 30
40 K, where the spin susceptibility along the hard magnetization axis (the
-axis) shows a broad maximum. The experiments also imply that tiny amounts of disorder or defects locally disturb the long-range electronic correlations and develop an inhomogeneous electronic state at low temperatures, leading to a low temperature upturn observed in the bulk-susceptibility in
. We suggest that UTe
would be located on the paramagnetic side near an electronic phase boundary, where either the magnetic or Fermi-surface instability would be the origin of the characteristic fluctuations.
Shishido, Hiroaki*; Nishimura, Kazuma*; Vu, TheDang*; Aizawa, Kazuya; Kojima, Kenji M*; Koyama, Tomio*; Oikawa, Kenichi; Harada, Masahide; Oku, Takayuki; Soyama, Kazuhiko; et al.
IEEE Transactions on Applied Superconductivity, 31(9), p.2400505_1 - 2400505_5, 2021/12
Times Cited Count:0 Percentile:0(Engineering, Electrical & Electronic)In this study, we employed a superconducting detector, current-biased kinetic-inductance detector (CB-KID) for neutron imaging using a pulsed neutron source. We employed the delay-line method, and high spatial resolution imaging with only four reading channels was achieved. We also performed wavelength-resolved neutron imaging by the time-of-flight method. We obtained the neutron transmission images of a Gd-Al alloy sample, inside which single crystals of GdAl were grown, using the delay-line CB-KID. Single crystals were well imaged, in both shapes and distributions, throughout the Al-Gd alloy. We identified Gd nuclei via neutron transmissions that exhibited characteristic suppression above the neutron wavelength of 0.03 nm. In addition, the
Gd resonance dip, a dip structure of the transmission caused by the nuclear reaction between an isotope and neutrons, was observed even when the number of events was summed over a limited area of 15
m
12
m. Gd selective imaging was performed using the resonance dip of
Gd, and it showed clear Gd distribution even with a limited neutron wavelength range of 1 pm.
Ideta, Shinichiro*; Johnston, S.*; Yoshida, Teppei*; Tanaka, Kiyohisa*; Mori, Michiyasu; Anzai, Hiroaki*; Ino, Akihiro*; Arita, Masashi*; Namatame, Hirofumi*; Taniguchi, Masaki*; et al.
Physical Review Letters, 127(21), p.217004_1 - 217004_6, 2021/11
Times Cited Count:0 Percentile:0(Physics, Multidisciplinary)Vu, TheDang; Shishido, Hiroaki*; Aizawa, Kazuya; Kojima, Kenji M*; Koyama, Tomio*; Oikawa, Kenichi; Harada, Masahide; Oku, Takayuki; Soyama, Kazuhiko; Miyajima, Shigeyuki*; et al.
Nuclear Instruments and Methods in Physics Research A, 1006, p.165411_1 - 165411_8, 2021/08
Times Cited Count:0 Percentile:0.02(Instruments & Instrumentation)Nakamine, Genki*; Kinjo, Katsuki*; Kitagawa, Shunsaku*; Ishida, Kenji*; Tokunaga, Yo; Sakai, Hironori; Kambe, Shinsaku; Nakamura, Ai*; Shimizu, Yusei*; Homma, Yoshiya*; et al.
Journal of the Physical Society of Japan, 90(6), p.064709_1 - 064709_7, 2021/06
Times Cited Count:12 Percentile:86.17(Physics, Multidisciplinary)Nakamine, Genki*; Kinjo, Katsuki*; Kitagawa, Shunsaku*; Ishida, Kenji*; Tokunaga, Yo; Sakai, Hironori; Kambe, Shinsaku; Nakamura, Ai*; Shimizu, Yusei*; Homma, Yoshiya*; et al.
Physical Review B, 103(10), p.L100503_1 - L100503_5, 2021/03
Times Cited Count:20 Percentile:91.69(Materials Science, Multidisciplinary)Vu, TheDang; Shishido, Hiroaki*; Kojima, Kenji M*; Koyama, Tomio*; Oikawa, Kenichi; Harada, Masahide; Miyajima, Shigeyuki*; Oku, Takayuki; Soyama, Kazuhiko; Aizawa, Kazuya; et al.
Superconductor Science and Technology, 34(1), p.015010_1 - 015010_10, 2021/01
Times Cited Count:3 Percentile:42.13(Physics, Applied)Okayasu, Satoru; Harii, Kazuya*; Kobata, Masaaki; Yoshii, Kenji; Fukuda, Tatsuo; Ishida, Masahiko*; Ieda, Junichi; Saito, Eiji
Journal of Applied Physics, 128(8), p.083902_1 - 083902_7, 2020/08
Times Cited Count:2 Percentile:16.57(Physics, Applied)Vu, TheDang; Nishimura, Kazuma*; Shishido, Hiroaki*; Harada, Masahide; Oikawa, Kenichi; Miyajima, Shigeyuki*; Hidaka, Mutsuo*; Oku, Takayuki; Soyama, Kazuhiko; Aizawa, Kazuya; et al.
Journal of Physics; Conference Series, 1590, p.012036_1 - 012036_9, 2020/07
Times Cited Count:0 Percentile:0.01Otani, Masashi*; Fukao, Yoshinori*; Futatsukawa, Kenta*; Kawamura, Naritoshi*; Matoba, Shiro*; Mibe, Tsutomu*; Miyake, Yasuhiro*; Shimomura, Koichiro*; Yamazaki, Takayuki*; Hasegawa, Kazuo; et al.
Journal of Physics; Conference Series, 1350, p.012067_1 - 012067_6, 2019/12
Times Cited Count:2 Percentile:75.34Negative muonium atom (e
e
, Mu
) has unique features stimulating potential interesting for several scientific fields. Since its discovery in late 1980's in vacuum, it has been discussed that the production efficiency would be improved using a low-work function material. C12A7 was a well-known insulator as a constituent of alumina cement, but was recently confirmed to exhibit electric conductivity by electron doping. The C12A7 electride has relatively low-work function (2.9 eV). In this paper, the negative muonium production measurement with several materials including a C12A7 electride film will be presented. Measured production rate of the Mu
were 10
/s for all the Al, electride, and SUS target. Significant enhancement on electride target was not observed, thus it is presumed that the surface condition should be more carefully treated. There was no material dependence of the Mu
averaged energy: it was 0.2
0.1keV.
Iizawa, Yuki*; Shishido, Hiroaki*; Nishimura, Kazuma*; Vu, TheDang*; Kojima, Kenji M*; Koyama, Tomio*; Oikawa, Kenichi; Harada, Masahide; Miyajima, Shigeyuki*; Hidaka, Mutsuo*; et al.
Superconductor Science and Technology, 32(12), p.125009_1 - 125009_8, 2019/12
Times Cited Count:11 Percentile:59.6(Physics, Applied)Nakamine, Genki*; Kitagawa, Shunsaku*; Ishida, Kenji*; Tokunaga, Yo; Sakai, Hironori; Kambe, Shinsaku; Nakamura, Ai*; Shimizu, Yusei*; Homma, Yoshiya*; Li, D.*; et al.
Journal of the Physical Society of Japan, 88(11), p.113703_1 - 113703_4, 2019/11
Times Cited Count:49 Percentile:94.5(Physics, Multidisciplinary)Vu, TheDang; Iizawa, Yuki*; Nishimura, Kazuma*; Shishido, Hiroaki*; Kojima, Kenji*; Oikawa, Kenichi; Harada, Masahide; Miyajima, Shigeyuki*; Hidaka, Mutsuo*; Oku, Takayuki; et al.
Journal of Physics; Conference Series, 1293, p.012051_1 - 012051_9, 2019/10
Times Cited Count:5 Percentile:95.15Tokunaga, Yo; Sakai, Hironori; Kambe, Shinsaku; Hattori, Taisuke; Higa, Nonoka; Nakamine, Genki*; Kitagawa, Shunsaku*; Ishida, Kenji*; Nakamura, Ai*; Shimizu, Yusei*; et al.
Journal of the Physical Society of Japan, 88(7), p.073701_1 - 073701_4, 2019/07
Times Cited Count:51 Percentile:94.85(Physics, Multidisciplinary)We report Te-NMR studies on a newly discovered heavy fermion superconductor UTe
. Using a single crystal, we have measured the
Te-NMR Knight shift
and spin-lattice relaxation rate
for fields along the three orthorhombic crystal axes. The data confirm a moderate Ising anisotropy for both the static (
) and dynamical susceptibilities (
) in the paramagnetic state above about 20 K. Around 20 K, however, we have observed a sudden loss of NMR spin-echo signal due to sudden enhancement of the NMR spin-spin relaxation rate
, when the field is applied along the easy axis of magnetization (=
axis). This behavior suggests the development of longitudinal magnetic fluctuations along the
axis at very low frequencies below 20 K.
Sue, Yuki*; Iijima, Toru*; Inami, Kenji*; Yotsuzuka, Mai*; Futatsukawa, Kenta*; Kawamura, Naritoshi*; Mibe, Tsutomu*; Miyake, Yasuhiro*; Otani, Masashi*; Hasegawa, Kazuo; et al.
Proceedings of 10th International Particle Accelerator Conference (IPAC '19) (Internet), p.37 - 40, 2019/06
The result of bunch size measurement of muon accelerated by RFQ up to 89 keV is presented in this paper. A four-stage muon linac for precise measurement of muon property is under construction in the J-PARC. The demonstration of the first muon RF acceleration with an RFQ linac was conducted and the transverse profile of the accelerated muons was measured in 2017. As one of the remaining issues for the beam diagnostic system, the longitudinal beam profile after the RFQ should be measured to match the profile to the designed acceptance of the subsequent accelerator. For this purpose, the new longitudinal beam monitor using the microchannel plate is under development. The time resolution of the monitor aims to be around 30 to 40 ps corresponding to 1% of a period of an operating frequency of the accelerator, which is 324 MHz. On November 2018, the bunch size of accelerated negative muonium ion of 89 keV with the RFQ was measured using this monitor at the J-PARC MLF. The measured bunch width is ns, which is consistent with the simulation.
Strasser, P.*; Abe, Mitsushi*; Aoki, Masaharu*; Choi, S.*; Fukao, Yoshinori*; Higashi, Yoshitaka*; Higuchi, Takashi*; Iinuma, Hiromi*; Ikedo, Yutaka*; Ishida, Katsuhiko*; et al.
EPJ Web of Conferences, 198, p.00003_1 - 00003_8, 2019/01
Times Cited Count:13 Percentile:99.33Lee, C. H.*; Nishida, Atsuhiro*; Hasegawa, Takumi*; Nishiate, Hirotaka*; Kunioka, Haruno*; Kawamura, Seiko; Nakamura, Mitsutaka; Nakajima, Kenji; Mizuguchi, Yoshikazu*
Applied Physics Letters, 112(2), p.023903_1 - 023903_4, 2018/01
Times Cited Count:27 Percentile:80.4(Physics, Applied)Low energy phonons in LaOBiSSe
are studied using inelastic neutron scattering. Dispersionless flat phonon branches that are mainly associated with a large vibration of Bi atoms are observed at a relatively low energy of
= 6 - 6.7 meV. The phonon energy softens upon Se doping owing to its heavier atomic mass than S atom and the expansion of lattice constant. Simultaneously, the lattice thermal conductivity lowered upon Se doping as the same manner of the phonon softening. These suggest that despite the lack of an oversized cage in LaOBiS
Se
, rattling motions of Bi atoms can scatter phonon like rattling in cage compounds, contributing to enhance the thermoelectric property.